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Abstract—The Digital Library for HealthCare (DLHC) 

implements a hybrid peer-to-peer network for dissemination, 

storage, and querying of electronic patient records.  By making 

functions available in a service oriented architecture using web 

services, the DLHC has a low cost of implementation and a high 

degree of extensibility.  The DLHC has the ability to support all 

types and sizes of records currently available, and has a growth 

channel that will support future data needs alongside of historical 

record access. 

 
Index Terms—Digital Library, Healthcare, Electronic Patient 

Record, Peer to Peer, Service Oriented Architecture. 

 

I. INTRODUCTION 

“The future for the application of computers in medicine 
is bright. With health care now considered a right rather 
than a privilege, the demands on physicians offer a 
unique opportunity to use the computer as a ‘physician 
assistant.’ Large computer files on patients will be kept, 
and decisions made from these files will assist the 
physician and health care provider... A computerized 
health care system is the answer to these new 
demands.”  IEEE Computer Magazine, January 1975[1]. 

 

 

Health care information management is a growing 

problem with direct impact on patient care.  There is 

significant current interest in making patient medical 

records broadly available to two classes of individual – 

the patient and the provider[2].  Much of the research 

interest has focused on the role of the patient in 

managing their own healthcare information[3-5] and on 

the implementation of small-scale systems with a 

centralized storage component [6, 7].   

The non-distributed implementations put forth to-date 

address the concerns of either the patient or the 

provider, but are not designed for access by both 

classes’ stakeholders who have very different needs.  

Additionally, current implementations assume a 
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homogenous, structured dataset with centralized records 

management by a single source or small number sources.  

In reality, there are numerous competing standards for 

health information and many records are in proprietary 

formats[8]. 

The DLHC provides a conceptual design which 

addresses the shortcomings of current implementations 

while providing a solution which maps better to 

distributed nature of healthcare information and the 

difficulties faced when working with an IT-phobic 

audience[9].   

To make the DLHC future-resistant and ensure 

interoperability with the largest number of datasets, a 

Service Oriented Architecture (SOA) design is used.  A 

set of primitive operations is defined for DLHC rather 

than requiring a single interface and/or platform 

implementation.  The use of a unifying SOA allows 

individual requestors the ability to define their own fit-

for-purpose client interfaces as well as the ability to 

retrofit the disparate, legacy sources of patient records.  

A peer-to-peer (P2P) design is implemented for 

communication and data transfer that allows for both 

rapid, distributed query fulfillment as well as redundant, 

resilient data storage. 

 

II. PRIOR ART 

There are multiple relevant peer-to-peer network 

designs that DLHC builds upon, and significant work 

has been done in making information available in a 

SOA.  Additionally, there have been several theoretical 

implementations of healthcare record systems and, large 

scale implementations of non-healthcare libraries 

provide a basis for many of the architecture decisions 

for the DLHC.  Key areas of prior art are detailed below. 

 

A. Peer-to-Peer 

Peer-to-Peer networks have been moved from simple 

sharing environments like Gnutella[10] to rich content-

sharing and replication systems.  In the medical space, 
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Huang et al describe the Picture Archiving and 

Communication System, PACS[11].  Meant to handle 

tens of terabytes of medical data, PACS was designed 

primarily as a way to store records off-site rather than a 

collaborative tool.  Hung-Chang et al describe a more 

general approach to content storage in peer-to-peer 

networks[12].   

Vagelis et al describe a Communications Virtual 

Machine meant to mediate different health data, but 

without a focus on data redundancy[13].  For general 

data reliability, Reiche et al describe approaches to data 

reliability in general peer-to-peer networks[14],   and 

Judge and Ammar document strategies to protect 

content[15].   

 

B. Service Oriented Architectures 

SOAs are a good fit for health information, given the 

limited number and repeatability of tasks a typical 

patient looks to perform in a standardized way across 

providers [16].  This same concept of operations was 

used by Roantree et al in a smaller-scale Common 

Object Request Broker Architecture (CORBA) 

implementation over a Health Level 7 (HL7) structured 

records system[17]. Beyer et al place a system on top of 

HL7 and other structured data, but take a use-case 

approach to design and add the idea of a consolidated 

Master Patient Index (MPI)[18] similar to the patient 

index used in DLHC.  Both Turner et al and Omar et al 

use web services as the foundation for health 

information systems in an SOA architecture – Turner to 

make available health data as a service and Omar to 

build a network of health sensors[19-21]. 

Earlier work with distributed object technology in the 

area of consolidating health records was performed by 

Anderson Consulting and presented as part of a 

workshop on objects in healthcare[22].  Amendalia et al 

built a more robust system that uses the concept of both 

simple and complex queries as well as distributed query 

processing in an SOA, similar to DLHC for just 

mammogram data[23].  Possibly the closest in concept 

to DLHC is Integrated Healthcare for the Enterprise 

(IHE), noted above as providing an interoperability 

standard.  Its IHE’s intent to permit interoperability 

through an SOA based on web services[24].  DLHC uses 

a similar model with the additional benefit of leveraging 

peer-to-peer communications. 

C. Theoretical Healthcare Management Systems 

A theoretical model for healthcare records, TeleMed, 

was proposed by Forslund et al which has the unique 

capability of integrating the results of a patient record 

search from multiple sources[25].  TeleMed is the 

closest design to DLHC in that it is a distributed model 

and uses a public key authentication mechanism to 

ensure privacy.  It also has a proposed data mining 

function for searching similar images that can be applied 

to rich media as in DLHC.  Takeda proposes another 

theoretical system which incorporates typical hospital 

management functions (billing, scheduling, etc.) 

alongside a distributed object implementation of record 

sharing.  The concept of extending the capabilities 

beyond individual patient access to institution and 

public health access is also used in DLHC[26].  

Abiteboul et al further look at a peer-to-peer system 

which addresses current privacy concerns using 

XML[27].  Finally, Bliykh et al propose a grid-based 

approach to national health information management 

using a SOA approach, but, like others noted above, rely 

on records being in a common format[28]. 

 

D. Digital Libraries 

 

Digital libraries address the same issues of rich 

content indexing as healthcare records[29], and recent 

concerns about digital rights management (DRM)[30] 

have corollaries to healthcare records protection.  

LOCKSS provides a raw replication framework, with a 

focus on securing data for extended period of time, 

building on other data replication work [31-33].  The 

replication strategy takes into account authorization for 

content access, but does not address multiple source 

aggregation.  Additionally, replication is not done in a 

swarm fashion.   

Recognizing the benefits of a hybrid peer-to-peer 

network, Lu et al use a region-based document retrieval 

system which serves as an inspiration for the 

hierarchical superstructure in DLHC[34].      

III. DESIGN PRINCIPLES 

 

A. Performance 

The performance of the DLHC should be suitable for 

large scale implementation.  For discussion purposes 

here and below, the United States healthcare system is 

used, but the ultimate design should scale to global 

levels.  The performance principles are set forth as 

follows. 

1) Availability 

Any medical record held within DLHC should be 

available for query and access from any requestor at any 
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time.   

2) Query Time 

Any query request should be fulfilled within a 

sublinear search time plus the time to transfer the record 

contents.  This includes system-wide queries, such as an 

epidemiologist looking for aggregate disease trends in a 

particular state, as well as directed queries, like an 

individual searching for their records at a specific 

provider.  Querying should be optimized for both 

keyword and geographic searches. 

3) Scalability 

The DLHC should be sufficiently robust as to 

accommodate dozens of records for each member of the 

global population.  Query time and performance must 

scale at a sublinear rate based on a linear increase in the 

number of records, number of providers, and the number 

of queries generated. 

 

B. Interoperability 

Because of the diverse nature of legacy health 

information systems presently used and the inability to 

predict future trends, the DLHC must be general enough 

to support interoperability with past, present, and future 

systems.  To ensure the maximum interoperability, the 

DLHC defines a high level protocol, a set of metadata, 

and a group of operations necessary to achieve the 

design goals.  The key interoperability design principles 

employed are noted below. 

1) Legacy Support 

The DLHC must support legacy platforms either 

natively or through the implementation of appropriate 

middleware.     

2) Technology Independence 

The design decisions should not constrain the 

implementation to a single platform or class of 

platforms.  Additionally, the abstractions should not 

require any specific lower-layer network mechanism.  

Support for heterogeneous platforms to increase 

adoptions and ensure class-attack protection should be 

implemented[35]. 

Schema Independence 

The architecture must not require a single schema 

and/or data storage format for records.  Support for both 

structured and unstructured data must be permitted to 

prevent existing data stores from needing to either 

duplicate data or transform other applications such as 

billing systems to support a different format. 

 

C. Security 

The regulatory nature of health information globally 

requires a high degree of security and privacy to even be 

permissible to implement.  In the United States, the 

Health Insurance Portability and Accessibility Act[36] 

strictly regulates the controls over data that must be in 

place on systems from covered entities, which include 

the providers connecting to DLHC.  In other countries, 

laws like European Data Protection Act require both 

patient control over their records (regardless of location) 

as well as restrictions on sharing of personally 

identifiable information across national borders, further 

complicating implementation[37].  The system design 

must take into account these restrictions as well as 

future restrictions of a legal nature.  The overall security 

design principles are detailed below. 

1) Confidentiality 

DLHC must maintain record confidentiality.  Unlike 

many other P2P systems, DLHC requires user 

intervention and authorization for records release.  This 

is further complicated by the requirement to transfer 

control over records release in cases of emergency and 

individual incapacity.  The confidentiality requirement 

holds for aggregate data as well – the knowledge that a 

search hit for an individual name even exists at an 

abortion clinic, for example, would provide 

inappropriate insight into a record even without 

revealing the contents of that record.  Maintaining the 

confidentiality of the data while at rest and in transit (to 

prevent eavesdropping or platform-level disclosure) is a 

platform-specific implementation decision outside the 

scope of the system architecture. 

2) Integrity 

Record contents must be maintained without 

alteration, either accidental or intentional.  The patient 

and provider responsible for creation must be the 

ultimate arbiters of record contents.  Completeness of 

the record must be guaranteed as well – the exclusion of 

key information such as a drug allergy could result in a 

loss of life. 

3) Revocability 

An individual under European Union law has the right 

to revoke access to their information from any provider 

at any time.  This requires a temporal nature be included 

in patient authorizations (to avoid a central revocation 

list).  This includes the need for a patient to request 

deletion of their record from a specific provider as well 

as delete information from the entire DLHC. 

4) Redundancy 

Sufficient redundancy must be present in the DLHC to 

prevent the loss of data when a single provider and/or 

cluster of providers are lost.  This must extend to the 

loss of a location through a location failure or loss of 
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network connectivity. 

... ... ...

...

 
Fig 1.  DLHC Conceptual Architecture. 

IV. ARCHITECTURE 

 

The DLHC makes use of a P2P architecture with a 

superimposed geographic hierarchy.  The system 

consists of two node types – providers and consumers.  

Providers are persistent nodes which contain healthcare 

records for individuals, whereas consumers are clients 

which make queries on providers.  In many cases, a 

provider is also a client – a doctor’s office may be a 

provider that makes available its patient’s records, while 

simultaneously acting as a client that queries and obtains 

the records for new patients.  Fig. 1 shows the 

conceptual architecture, with clients shown querying 

multiple providers.  The providers are shown in a 

hierarchical fashion, but this is for conceptual purposes 

only – each provider has the same implementation and 

maintains patient information and is only hierarchically 

arranged for indexing purposes. 

Data on patients stored on provider systems in 

indexed in three separate ways.  First, the provider 

hierarchy itself is indexed by geographic region.  

Second, patient records are indexed by patient identifier.  

Third, key terms from the individual records are 

extracted and held in a third, inverted index.   

Though the use of separate indices may be suboptimal 

for performance compared to hybrid structures[38], they 

are more appropriate for the DLHC implementation for 

three reasons.  First, the indices are segmented 

differently – the geographic index serves double duty as 

a node list, while the patient indices and keyword 

indices are split and localized.  Second, the use of the 

geographic index is a local search whereas the other 

searches are distributed.  Third, by using the geographic 

index first to identify an appropriate keyword or patient-

record subindex location, hybrid structure performance 

is achieved without the added complexity of a more 

complicated data structure. 

The patient data itself is stored in a hybrid structure 

consisting of raw data and superimposed metadata.  

There are two main choices for existing data – allow it 

to remain in its existing form or transform it into a 

defined schema[39]. Choosing to allow the raw data to 

remain in its existing form allows for both easy 

integration with existing records systems and support for 

future systems.  Choosing to migrate to a defined 

schema enhances the ability to query the information to 

approach that of a data retrieval solution.  In order to 

speed adoption while still allowing for some metadata 

being stored, the DLHC defines a metaschema which 

coexists with existing structures.  The metaschema 

defines only three mandatory fields – the patient 

identifier, the patient public key and the record identifier 

– with other fields added as optional enhancements 

depending on the record contents.  The remainder of the 

record is full-text indexed in its current format without 

requiring semantic information.  For already-structured 

data, the metaschema is extensible enough to include 

common patient record fields which can be populated 

but are not mandatory.  Additionally, fields for 

multimedia content such as the transcript from a video, 

thumbnails of x-rays, and format information for MRI 

scan results are supported to allow for rich client 

interfaces and rapid browsing[40]. 

 

A. Geographic Index 

The individual providers are stored in a hierarchical 

index, called the geographic index, maintained in a basic 

R-Tree data structure for quick searching.  The R-Tree is 

used to provide fast querying for areas with both evenly 

distributed providers (the East Coast of the United 

States) as well as sparse areas (Eastern Siberia)[41].  

Though not optimized for all situations, the real world 

data is not expected to approach the worst case 

scenarios, thereby warranting a more complex structure 

[42].  By providing a geographic hierarchy, query 

localization can be performed.  Examples of 

geographical queries may include a patient attempting to 

identify online providers in their local area or a county 

health department compiling disease statistics.  

Providing a geographic index structure additionally 

permits the localization of searches for patient 

information where a priori information is known about 

the record locations. 

Each geographic index is replicated in its entirety to 
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every provider in the DLHC.  This is done so that every 

peer does not need to respond to every query on the 

network – a geographic search for encephalitis cases in 

Georgia does not need to engage peers in California.   

 
ProviderID Description MBR Min Lat/Long MBR Max Lat/Long Last Update Last Known IP Parent Child 1..8

4 Bytes 64 Bytes 20 Bits 20 Bits 4 Bytes 4 Bytes 32 Bytes 256 Bytes  
Fig 2.  Geographic index entry details. 

 

There are approximately 360,000 provider entities in 

the United States at the present time (hospitals, clinics, 

doctors offices, podiatrists, etc.) and the number is 

decreasing with industry consolidation[43] and growth 

in provider size (there are fewer individual doctors – 

most work in practices).  Assuming each provider has a 

description of 64 single byte characters1 plus an IP 

address (4 bytes) and an associated minimum bounding 

rectangle (MBR) (5 bytes to store latitude and longitude 

to the second for the bounds), a 32 bit unique identifier, 

and a 4 byte date entry for the last update as shown in 

Figure 2, each entry can be stored in 81 bytes 

uncompressed.  Including 288 bytes for child and parent 

node pointers, we have a size of 369 bytes per entry, 

giving a total size of 127MB for the entire directory.  

Assuming a 50% compression ratio (better compression 

is possible with fit-for-purpose algorithms, but DLHC 

implements standard Lempel-Ziv for compatibility[44]), 

the total size of the directory would be 63.5MB, not an 

unreasonable size for a one time transfer plus updates at 

current bandwidths. 

Each of the providers is responsible for defining its 

own scope in the MBR.  A local doctor’s office would 

have a scope consisting of a few miles, whereas a 

regional hospital might have a scope that covers dozens 

of miles.  At the higher levels, a state health association 

might cover hundreds of miles and a national 

organization the entire US.  The MBR should be defined 

so as to cover the majority of the patient base for an 

organization – a few outlier patients should not increase 

the scope of the MBR.  In addition to their own records, 

regional providers maintain metaindices for patient 

records and keywords as described in those index 

sections below. 

Updates to the geographic database can be performed 

by a client or peer request (pull.)  Push updates are not 

permitted to avoid overloading of the peers by a 

malicious and/or misconfigured provider.  The details of 

the update operations are described below. 

For optimized searching of provider names, a client 

 
1 To support double-byte and quad-byte languages, as well as more 

detailed descriptions, additional description information can be stored in the 

metadata associated with the node itself. 

may further index the 360,000 provider descriptions in a 

simple inverted index, but this is not an interaction of 

the system and is purely client use dependent.   

 

B. Patient Index 

The patient index is a simple, sorted list mapping 

patients’ identifiers to providers which hold information 

about that patient.  Each provider must maintain an 

index of all patients on their local system, as well as 

peer providers under the same regional provider.  For 

regional providers, an index of all patients of the 

provider and its peers as well as an index of patient 

records held by sub-providers must be maintained.  Due 

to the expected sparseness of consolidated regional 

metaindices, a reverse mapping of the patients at a 

particular subprovider is not maintained. 

There are two different types of index entries for 

patients – internal and external.  Internal entries 

correspond to records maintained by the provider itself 

(or replicated to the provider from peers).  The internal 

entries indicate to the provider that it must search its 

local system – how the local search is conducted is 

dependent on the underlying software and is not relevant 

to the DLHC architecture.   

External entries indicate patient records exist within a 

sub-region of the current index.  In the case of state and 

national-level providers, an exhaustive search of all sub-

regions may be required to find the one that actually 

contains the patient record.  While this may be less 

efficient overall, it distributes the search request 

between multiple peers, it only requires one peer per 

sub-region to perform the search, and it allows the 

patient record to be a smaller size as it does not require 

the storage of specific sub-provider identifier. 

 
PatientID Record Location Last Update Secure Identifier

8 Bytes 1 Byte 4 Bytes 64 Bytes  
Fig 3.  Patient index record structure. 

 

Unlike the geographic index, the patient index is 

expected to grow linearly as time progresses to coincide 

the growth in population[45].  As such, the structures 

must be searchable in a reasonably fast manner for both 

current and historical data.  At this point, no provisions 

for data expiration (for deceased patients) are planned, 

but such provisions could be easily implemented using 

the operations provided in the future as needed.  

 The patient index is stored as a simple sorted list of 

patient identifier records, as shown in Figure 3.  Since 

the searches on the list are dependent on local resources, 

the individual providers can determine how to best 
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organize local lists, but a B-tree would be a reasonable 

structure[46].  Each internal identifier consists of a 

unique patient ID (64 bits – enough to handle the growth 

in patients for the next several millennia), a last updated 

date, a 512-bit public key for the patient, and a record 

location indicator.   

The use of the public key in authenticating queries is 

further detailed below.  In the event future 

implementations require a larger key (due to advances in 

cryptanalysis), the patient identifier record can be 

expanded with new record fields without a requirement 

for major architectural revisions. 

With a per-patient field size of 77 bytes, the size of 

the patient list can grow to be fairly large.  As an 

example, a national-level provider that maintained the 

list of all patients in the United States would need 

approximately 23 Gigabytes of storage to keep the list.  

This allows for efficient identification of the existence 

of a record within a given scope while providing 

efficient local searching of much smaller provider lists 

for regional and local entities. 

 

C. Keyword Index. 

The keyword index maintains a list of unique 

keywords in an inverted index structure.  Each provider 

maintains an index of the keywords present in all the 

patient records on its system.  Because the patient 

records for each branch of the geographical index are 

replicated to other peers at the same tree level on that 

branch, each of these peers will also have the same 

index.  Because of this, there is no need for an index 

synchronization routine – the indices can be updated 

locally after the patient records have been synchronized. 

As with the patient index, all regional providers must 

maintain a keyword index for all peers underneath them 

as well as their own local index.  Unlike the leaf indices, 

these indices will contain only the words that are present 

on the lower-geographical scope peers, not pointers to 

the specific documents or even providers (for large-

scope indexes) that contain the words.   

Based on the above structure, the index for a given 

provider’s internal records would be expected to grow at 

linear rate and be approximately 15% of the total record 

size after compression using standard coding 

techniques[47].  Given an average patient record size of 

17KB[48] per visit, and a 2.67 visits per patient per 

year[49], there would be a total of 13.6 terabytes of text 

health data generated annually in the United States.  An 

average data size of 38GB per provider per year would 

be generated based on the above numbers2.  Given the 

15% above, the average index would grow linearly at a 

rate of 5.7GB per year. 

Since the metaindices held on regional providers do 

not contain pointers to data (other than their own 

internal patient data), they are not expected to grow at 

the same rate as the individual provider indices.  

Because of this, the metaindices would be expected to 

grow at a sublinear rate based on Zipfs Law[50].  Given 

the search efficiency of a B-tree as an example index 

structure, this would mean a log(log(N)) annual increase 

in search time, much slower than the expected growth in 

processing speed and memory availability[51], 

indicating search times would improve faster than data 

growth would inhibit their speed. 

For local provider keyword indices, a mapping of 

keywords to individual patient records is maintained as 

another simple inverted index structure.  These are 

maintained as an inverted index with a pointer into a list 

of unique record identifiers which identify the actual 

patient records. 

To reduce the size of the index (and more importantly, 

to limit the time spent on fruitless querying for this 

application) key stopwords are removed.  Because the 

structured nature of patient records is such that certain 

words will likely appear in every record (e.g. name, 

address, sex, etc.), DLHC uses a custom stopword list as 

well[52]. 

 

D. Patient Records 

With competing standards for the implementation of 

Healthcare records, frequently referred to as Electronic 

Health Records (EHRs), the DLHC must retain broad 

compatibility with legacy, emerging, and future 

implementations.  Existing standards include Health 

Level 7’s Clinical Document Architecture, the 

OpenEHR initiative, the Integrated the Healthcare 

Enterprise’s Cross-Enterprise Document Sharing (IHE-

XDS), and newer systems built upon Medical Markup 

Language[8].  Because of the competing standards, the 

DLHC is built to sit on top of existing records systems 

and allows individual providers the ability to leverage 

the semantic structure of these libraries while still 

retaining compatibility with unstructured and 

proprietary records systems. 

DLHC defines a metaschema, a schema that sits on 

top of existing schemas.  The metaschema has three 

required components, a 64-bit patient identifier, a 512-

 
2 No studies indicating the distribution of patients per facility on the above 

provider statistics are available, so a simple mean calculation is used. 
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bit patient public key and a second 64-bit record 

identifier. 

The 64-bit patient identifier is unique to the entire 

DLHC network.  When a patient is added to the system, 

a random 64-bit identifier is generated.  This identifier is 

then searched for on the DLHC – if it does not exist, it is 

assigned to the new patient.  If it does exist (a one in 

3x10
9
 likelihood), a new random identifier is generated 

until a unique identifier is found.  Once an identifier is 

generated, the patient generates a public and a private 

key using an elliptical curve algorithm.  The use of 

elliptical curve cryptography (ECC) over systems like 

the RSA suite of algorithms or el Gamal was done to 

minimize the key length.  ECC requires a key size of 

approximately twice that used in traditionally symmetric 

algorithms, instead of ten to twenty times the size as 

required by other public key approaches[53].  Given the 

storage of uncompressable public keys in a large index 

structure, the key length is an important consideration. 

The public/private key pair can be generated either by 

the provider’s system or patient generated.  The provider 

generated key provides simplicity, but the private key 

will be available to the provider, if only briefly.  

Additionally, a mechanism to transmit the private 

portion to the patient either through email or locally on a 

smartcard or USB key is needed.  A patient-generated 

key would require the patient to give the public key to 

the provider after generation.  This has the advantage of 

allowing the patient to generate their own key offline, 

and ensure they are the only ones with access to the 

private portion.   

Though both approaches are supported, DLHC 

recommends the former approach to enable an added 

benefit – key escrow.  When a patient selects a primary 

care physician, that physician can become an escrow 

agent for the patient’s private key.  In the event of 

patient incapacity or patient death, the physician can 

authorize the disclosure of patient information on their 

behalf.   

The 64-bit record identifier is used to provide a 

unique ID for each record in the DLHC.  The ID 

consists of a sequential 32-bit identifier generated by the 

provider, prefixed with the provider’s own unique ID. 

The remainder of the metadata is optional and is 

stored in two sections – one for personally identifiable 

information (PII) and the second for non-PII medical 

information.  The PII information is protected (and can 

be encrypted with the patient’s private key if supported 

by a particular implementation).  The non-PII section is 

not encrypted and can be searched using a parser for 

providers that support a richer query language.  If the 

medical records are already in a markup language like 

MML[54], the entire record becomes the second half of 

the metaschema.  If the record is in a proprietary format, 

the data can be translated to MML and/or the raw text 

extracted and used for basic keyword searches on the 

second portion of the metaschema.  A sample record is 

displayed in Figure 4. 

 

Preamble Record ID Patient ID Public Key

64 Bits 64 Bits 512 Bits

PII Personally Identifiable Information

in MML

Non-PII Non Personally Identifiable 

Information in MML

Original Note:  This may be transformed to 

Record the above metaschema format

and the original removed or

archived.  There is no prescribed

format for original records.

 
Fig. 4.  Metaschema for medical records. 

 

E. Provider 

The provider architecture is intended to be platform 

and language independent.  In fact, having multiple 

providers developed using different languages for 

different platforms provides protection against platform 

or language specific flaws that may arise in the 

future[55].   

The high level structures to be implemented by the 

provider are noted above.  To achieve interoperability 

with clients and each other, both a common set of 

routines and a unifying communication mechanism must 

be implemented.  The routines to be used are detailed 

below, and the communication mechanism is detailed 

here. 

Each provider consists conceptually of a 

communicator, an indexer, a search agent, and a 

synchronization agent.  The communicator provides a 

mechanism for contacting and receiving contact with 

external entities.  The indexer maintains the individual 

indices noted above and provides indexing on new 

documents as they are added.  The search agent 

performs internal searches in response to queries.  The 

synchronization agent is responsible for ensuring the 

integrity of individual patient records.  Note these are 
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logical functions of the provider, not actual modular 

implementations.  The specific modular breakdown is 

determined by the implementer. 

The communicator will operate using web services as 

the communications model.  The underlying transport 

will utilize the Simple Object Access Protocol 

(SOAP)[56] to interact with both clients and other 

providers.  SOAP was chosen both for its simplicity and 

for the availability of existing libraries to draw upon for 

new provider development. As an added benefit, 

extensive security extensions are available to ensure 

transport-level security without requiring additional 

design[57].  WSDL[58] is not needed as the operations 

are already predefined, though it may be used for 

individual providers to make available a more extensive 

search capability.  Additionally, UDDI[59] is not needed 

since there is no centralized directory of these services 

(it is distributed).   

The indexer structures are defined above.  The 

specific tokenization and parsing tools implemented by 

the indexer will be specific to the existing record 

formats used by the underlying record structures.  As an 

example, an indexer for video transcriptions would need 

to perform speech-to-text conversion, whereas an index 

for MML information would need to understand XML.  

As an additional task, the indexer is responsible for 

populating and updating all of the components of the 

metaschema as records change, except for the preamble.  

As an added security feature, the indexer must remove 

any references to patient name or other personally 

identifiable information from the parsed data so it is not 

included in the indices.  To respond to rich-media 

requests, the indexer is generates any non-textual media 

abstractions supported, including thumbnails and 

summaries[40].   

The search agent provides a link between the SOAP 

requests and the underlying data.  When a search request 

is received, the search agent queries the appropriate 

index.  In the case of the patient index, the search agent 

first verifies the validity of the request by decrypting a 

nonce provided by the communicator to the requestor 

using the appropriate patient public key.  If it matches, 

the hits are returned.  If it does not match, no data is 

returned – the same result as if there is no record 

available.  The details of this transaction are shown in 

Figure 5.   

 

Provider 1 Provider 2

Patient ID and request for record search

Agree to search.  Request P1 public key.

Send P1 public key

Send P2 public key and nonce

Encrypted with P1 public key

Send nonce encrypted with patient

 private key

Send results encrypted with P1 public key

 
Fig. 5.  Patient authentication for searching. 

 

The synchronization agent is responsible for keeping 

the indices replicated with same-tier peers and in the 

case of regional providers for lower-tier peers.  

Additionally, the synchronizer is responsible for 

maintaining record accuracy with peer record sets.  For 

index updates, the synchronization agent requests all 

peer entries which have changed in the past 24 hours 

according to the last updated date.  To maintain date 

accuracy, all dates are kept based on Coordinated 

Universal Time (UTC)3.  For deleted items, the 

synchronization agent maintains a simple list of deleted 

entries with the time of deletion.  These are discarded 

every thirty days on a rolling basis.  If a system is offline 

for a longer period, it must perform a full replication 

with a peer system to come back online. 

For patient records themselves, the synchronization 

agent is sent a torrent-like file with links to all of the 

information on that file.  Using the standard BitTorrent 

protocol, the patient record is then downloaded from all 

peers which maintain that record, reducing the download 

impact on any one peer[60].  In addition to the use of 

torrents, only those portions of records that have 

changed are replicated.  Using the Rsync algorithm and 

a series of hash values, DLHC is able to only send 

changed and/or added portions of text and not entire 

records where only a portion of a record has 

changed[61].  

F. Client 

The client architecture is largely undefined in DLHC 

 
3 Keeping the resolution to the specific date means that clients must make 

requests from a specific provider if they need results before 24 hours have 

elapsed.  If more frequent updates are required by a provider, it can 

synchronize more frequently and assume any entries with the current date 

require updating.  The additional overhead is expected to be minimal in terms 

of transfer bandwidth. 
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to provide for a large array of client needs.  A simple 

web interface which allows an individual to bring back 

their own patient record after providing their private key 

might be the simplest form of interface.  A more 

complex interface may be used by a national health 

system which needs to obtain aggregate statistics on a 

full geographic region.  These statistics might require a 

complex search of both MML and non-MML formatted 

records. 

Because of the diverse needs, the clients can be 

considered providers without peer-to-peer replication 

responsibilities (since providers can also be clients).  

Because this DLHC uses a service oriented architecture 

whereby the clients are merely electronic consumers that 

treat the entire DLHC system as one large provider.  

V. OPERATIONS 

There are several key operations which DLHC 

implements to provide the functionality detailed above, 

all of which are made accessible as web services.  The 

operations can be separated into two categories - updates 

and queries. 

 

A. Updates 

There are three specific update types that are 

supported by DLHC – peer updates, parent->child 

updates, and child->parent updates.  Each type is 

addressed individually below. 

1) Peer Updates 

Peer updates represent the synchronization of data 

between peers.  There are three specific peer update 

operations – updating the patient index, updating the 

geographic index, and updating a patient record.  

Additionally, there is a rebuild operation defined for 

peers which are damaged and/or new peers being added. 

Peer operations are performed between members that 

share the same parent node.  There will be a maximum 

of eight peers in any particular level, and each peer 

agrees to maintain an amount of storage capable of 

replicating data from each of the other seven nodes.  In 

the event there is a substantially uneven distribution of 

data, the largest of the peers will have their geographic 

scopes expanded and be placed in a parent position. 

The geographic index update occurs on a daily basis 

at a minimum.  Because the addition and removal of 

providers is an infrequent event (at the local level – 

system-wide it is still infrequent when compared to 

patient index updates), and the index structure has the 

ability to grow within a given level (up to eight peers), 

major changes to the overall geographic index are 

uncommon.  As with the other updates, scheduling on a 

daily basis permits the scheduling of updates during 

times of low system usage. 

To update the geographic index, the synchronization 

agent on a given peer sends a request to all of the other 

peers listed in its current geographic index.  The only 

information passed in the request (other than node 

identification) is the time of last update.  The peer 

receiving the request then sends back any changes in its 

geographic tree which have occurred since the last 

update time provided in a single set of records, prefixed 

as being adds, updates, or deletes, along with the 

associated changes to the record.  The records are sent in 

an XML document update with a simple MD5 hash 

value appended to ensure accurate transmission.  

If the last update time is longer than thirty days prior, 

the peer receiving the request sends a “request denied” 

response.  Additionally, if a malformed request is 

received or a request is received from a node listed as 

“deleted”, a “request denied” is sent.  If there are no 

updates, a “no update” response is received. 

The sender of the request waits until all of the peer 

updates have been received or a timeout has been 

reached.  All of the peer updates received before the 

timeout are then merged, with discrepancies settled by 

using the most current last update time.   

If a node does not respond by the timeout period, it is 

added to a “to delete” list which is kept locally.  If the 

node does not respond after thirty days, it is deleted 

from the geographic index. 

The update of patient indices proceeds in exactly the 

same fashion as the geographic index.  Because there is 

a potential for a large number of patient index updates 

over the course of a day, these updates are likewise 

scheduled for daily update at low bandwidth utilization 

periods. 

Each of the updates noted above has up to eight 

different requests.  Because the update is a one-way 

synchronization, there are 192 maximum updates which 

would occur daily on a given level within the geographic 

tree.  While this appears substantial, the amount of data 

transferred for these updates is likely to be small, with 

the patient index being the larger of the two. 

A large provider, such as the University of Chicago 

Hospital, may see an average of 1,095 patients per 

day[62].  Assuming 8 peers are all very large providers, 

this would mean 1,095 x 7 = 7,665 updates per peer per 

update in terms of actual updates.  In reality, because 

duplicate updates are sent, the last peer might actually 

have 7,665 x 7 = 53,665 as a worst-case update received.  

Given the size of the patient record, this would result in 
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a worst-case update of 4.1 MB per day4, well within 

acceptable bandwidth limits. 

The most costly peer operation is the patient record 

synchronization.  Given the numbers above, a high 

volume hospital may have 1,095 updates at 17KB per 

update.  This yields 1,095 x 17KB = 19MB per peer, for 

a maximum of 19MB x 7 = 177 MB total at a given 

level generated daily.  If the same synchronization 

routine as above were used, the impact may be 

signification.  As such, a different synchronization 

operation is performed. 

The patient record synchronization occurs after 

updating the patient index.  For each of the new patient 

index records processed (not received as there are 

potential duplicates), a different request is generated 

based on the type of record change – either an addition 

or an update request. 

Addition requests consist of two messages.  First, a 

request is sent to all peers consisting of the record 

identifier.  Each of the peers responds back with either a 

“record available” or a “record not available” response.  

The record available response consists of the record 

number, the last update date and time (from the record 

itself), the record size, an MD5 hash of the record 

contents, and a list of the available sections in the format 

of section name/section start byte/section end byte.  

Segment size is determined as MAX[record size/1024, 

1KB]. 

The requestor evaluates each of the record available 

responses and compares the hash values.  The most 

recently updated record is considered the master record.  

The requestor uses the MD5 hash of the master record to 

identify other records with the same content. 

Once the additional records with the same content are 

identified, the requestor sends a series of additional 

messages to each of these providers requesting segments 

in a round-robin fashion.  Because segments are 

requested in parallel round-robin, slower connections 

will automatically send less data.  As with all of the 

messages, a timeout will identify non-responding 

providers. 

Updates are more complex than additions.  For each 

updated record, the same initial message used for 

additions is sent to each peer and the same algorithm for 

determining which peers to request from is used.  Next, 

a decision is made on which update to use as follows: 

 
If (RecordSize<SizeThresholdLow) Then 

 Update Entire File 

 
4 This does not include envelope overhead and protocol overhead.  Even at 

a 50% overhead rate, a size of 6.15MB is still acceptable. 

Else 

 If (OldRecordSize/NewRecordSize<PercentThreshold) 

  Update Entire File 

 Else 

  Run Rsync on a segment-by-segment basis 

 

The two thresholds are used to avoid the overhead 

associated with Rsync on very small changes and very 

large changes.  For very small files, where the size of the 

file is less than a low threshold (determined by each 

provider based on their bandwidth availability), the file 

is simply retransmitted as a whole.  Similarly, for very 

large files where there is a very large growth in file size 

(through the addition of an endoscopy video to an 

existing text record, for example) the entire record is 

treated as an addition.  A reasonable threshold might be 

to use Rsync when the previous record is larger than 

10% of the size of the new record.  

For those records for which an update is warranted, 

the same round robin algorithm is used as for additions 

with two changes.  First, the segment size is determined 

by the requestor based on their bandwidth availability.  

Larger segments are used to make Rsync more efficient.  

Second, for each segment used, the full Rsync operation 

is performed with one of the peers to only send the 

updates to that segment in a back-and-forth series of 

messages[63]. 

The final update operation for a peer is a bootstrap.  

The bootstrap is run in one of three situations – the peer 

is irreparably damaged, the peer represents a new node, 

or the peer has been out of sync for more than thirty 

days.  A bootstrap may be performed offline (by copying 

the indices and records from an existing provider to 

tape) or online (through the bootstrap operation). 

 
Fig. 6.  Bootstrap process. 

To bootstrap a new node, an out of band 

communication is made to identify at least one node in 

the DLHC.  That node then gives authorization to the 

new node to bootstrap (the authorization process is 

outside the scope of this paper and may be either an 

online process of key exchange or an offline process – 

the end result being an authentication and authorization 

token that is given to the new peer and a new provider 
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ID).  The peer bootstrap process is shown in Figure 6. 

2) Parent->Child Updates 

Parent->Child updates are updates where a parent 

requests updates from a child node.  These updates are 

more frequent than peer updates, and are substantially 

smaller in size.  In addition to the peer index updates, a 

keyword index update is performed.  Patient records are 

not updated to parent nodes. 

To update its geographic index, a parent node (defined 

as any node that has children) first sends a simple 

polling request to each of its child nodes.  This poll 

request consists of a single “are you alive” message and 

response.  If a child node is found to not be available, 

the parent stores that in a list.  Any child nodes not 

responding for forty eight hours are considered 

temporarily lost, and those not responding for thirty 

days permanently lost.  For available nodes, the same 

synchronization used by peers is performed, but the 

request is made to every child (instead of just one child) 

and it is made every hour to reduce propagation time as 

described below. 

For nodes that are temporarily lost, the parent node is 

responsible for routing requests to any grandchildren 

directly under that node.  As such, the parent node 

begins to poll those nodes until the old child comes back 

into operation.  This is done in a recursive fashion up to 

a pre-defined limit based on the capacity of the parent.  

Any permanently lost nodes are removed by the parent 

and the geographic index reorganized as appropriate. 

 Patient record index updates are made with all 

children, similar to geographic updates.  These indices 

are updated in the same fashion as peer updates, except 

the frequency is hourly instead of daily. 

The keyword index updates are different than the 

other indices, given the potentially larger update 

volume.  In addition to the index words themselves, each 

child maintains a first added (as opposed to a last 

updated) date with each word.  Every hour, the parent 

node sends a request for keyword updates to each of its 

children.  The children each respond with an XML 

document containing all of the keywords that have been 

added or deleted in the past day, with an MD5 checksum 

of the entire document.  If the MD5 sums match, the 

keyword lists for all of the peers are merged into a 

single list, with duplicates removed.  Each keyword is 

then merged into the parent’s list of external keyword 

entries. 

3) Child->Parent Updates 

The reverse of the parent child update, the child 

parent update ensures child nodes are synchronized with 

parent nodes for geographic index purposes (patient and 

keyword indices and patient records are not downward-

propagated). 

The geographic updates are performed on an hourly 

basis and take the same form as the previous updates in 

reverse.  If a child node cannot contact its parent for 

greater than forty eight hours, it contacts a peer of its 

parent node for updates.  If the node is unavailable for 

thirty days, the update with the parent’s peer will 

automatically propagate the new geographic index (with 

a new parent) to the child. 

4) Propagation Delay 

There is a potential delay inherent in the DLHC for 

querying based on the propagation times of updates and 

the position being queried.  The further the geographic 

distance between the client and the provider holding the 

record, the longer the potential delay. 

There are two specific delay times to worry about – 

geographic propagation delays and patient/keyword 

propagation delays.  The geographic propagation delays 

are potentially twice as long as the other delays, as they 

must propagate up and down the tree structure in the 

worst case scenario.   

With a maximum child size of eight and a minimum 

child size of two (the worst case), the propagation delays 

can be easily calculated from the DLHC size.  Per 

above, with a DLHC containing 360,000 providers 

would have a minimum depth of seven and a maximum 

depth of nineteen. 

For geographic indices, the maximum propagation in 

the worst case would be eighteen hours for upward 

propagation and an additional eighteen hours for 

downward propagation given the hourly inter-level 

updates, for a maximum of thirty six hours.  This case 

occurs when a new provider is added to a leaf node.  

Since a new provider’s information wasn’t previously 

available, this is an acceptable propagation time.  The 

inter-level update frequencies could be shortened as 

needed to reduce this time. 

Keyword and patient index requests are only 

propagated upward.  Assuming the same levels as above, 

the maximum propagation delay for these would be 

eighteen hours.  If more timely access to query 

information is required, individual provider queries 

and/or lower regional queries can be performed. 

 

B. Queries 

There are two types of queries supported by the 

DLHC – simple and complex.  The simple query 

interface is designed to be easy to use and well defined, 

while the complex query interface is meant to be 
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flexible and allow for many different types of query 

operation. 

At the heart of the simple query operation are three 

basic assumptions: 

1. The most common query will be a request for a 

particular patient record.  The system should be 

optimized for this. 

2. Most records have a particular geographic scope 

associated with them.  An individual living in 

Saratoga Springs, New York is more like to have 

a record in Albany than Azerbaijan. 

3. Keyword searches can form the basis for more 

powerful searching.  Complex queries making use 

of semantic information can be performed as an 

offshoot of keyword queries. 

Based on the above assumptions, the two different 

query interfaces are defined below. 

1) Simple Queries 

There are three query types supported by the simple 

query interface – geographic scope queries, keyword 

queries, and patient ID queries.  The simple query 

interface can be used with all three query types at once, 

and “simple” is meant to denote the interface as opposed 

to the power of these queries. 

The simplest query is the geographic query, which 

returns all of the providers within a particular 

geographic region.  Because this particular query is 

intended as a building block for use with the other 

queries, it is handled locally by each provider and/or 

client.   

Since the geographic index is maintained locally, the 

geographic query consists of a simple navigation of the 

R-tree.  Because every provider and client maintains a 

copy of the geographic index, there is no functionality 

provided for remote geographic searching. 

The user interface design is not part of the 

specifications, but either text-based (type in a zip code 

and radius) or graphical interfaces are readily supported 

by the underlying structure.   

The patient record query is a simple query for a 

patient record based on a patient ID.  Because the 

patient query is percolated upward in the geographical 

index structure, the query can be performed at any layer 

from the root entries down.  Because the root entries are 

likely to restrict direct querying, it makes sense to 

couple patient queries with a geographic query by 

selecting a starting scope where the expected record or 

records may reside. 

The patient query starts at a particular provider that 

completely contains the region to be searched.  The 

client contacts that provider directly, and that provider 

searches its own patient index.  There are five possible 

search results: 

• Patient record not found.  There is no patient 

record that matches the identifier present in the 

hierarchy. 

• Authentication failure.  The authentication failed 

on accessing the patient record.  The response 

sent back is a “patient record not found” response 

to prevent guessing attacks.
5
 

• Record found locally.  The record is available 

from peers at this level. 

• Record present on child providers.  The record is 

present on a child node. 

• Record present locally and on child providers.  

Multiple records exist at a local and sublocal 

level. 

If the record or records are present locally, the 

response includes the record identifier, the record size, 

and an MD5 hash of the record contents.  The requestor 

then contacts the other peers associated with that record 

to determine if it is present on their systems.  If it is, the 

requestor breaks up the record into segments and 

requests individual segments from each of the peers.  

The peer responses to the segment requests are 

encrypted with the key established in the original 

authentication request to prevent eavesdropping or 

insertion attacks. 

If a record is identified as being below a particular 

geographic scope, that fact is returned to the requestor.  

The requestor then recursively queries each of the 

identified lower-level providers until the record is 

found.   

The difficulty with the patient query is centered on 

accidental disclosure of a patient record to an 

unauthorized individual.  While sanitized records (those 

stripped of PII) are permissible for open sharing, full 

records must be protected, hence the structure and 

procedure identified for authentication in Figure 5.  

Because of the confidentiality restrictions, a mapping 

of patient ID’s to patient names is not done centrally.  

This may seem like needed functionality, but given the 

ambiguity of names (e.g. John Smith) and the ability to 

associate patient ID’s with a particular provider if you 

are a regional provider or have access to a regional 

provider’s data, this is not feasible from a privacy 

perspective.  

The final and most complex query operation is the 

keyword query.  As with the patient query, the keyword 

 
5 A timer delay with a random amount of wait time can be built in to 

defeat timing attacks. 
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query is generally coupled with a geographic query. 

Global queries may be supported for certain providers, 

however, to allow for the generation of overall global 

statistical data.  

The keyword query begins by identifying a provider 

with a specific scope.  The provider is then sent up to 

three messages – once to determine if there are matching 

keywords at or below that provider’s scope, and a 

second time to request summaries of documents that 

match those keywords.  Finally, individual messages 

requesting specific patient records are sent. 

The initial message takes the form of an XML 

message with individual keywords.  The response back 

is one of four possible messages, there are no hits, there 

are local hits, there are child hits, or there are both local 

and child hits.  An example return message snippet 

might be as follows: 

 
<keyword value=’Asbestosis’> 

  <children>True</children> 

  <local> 

    <record>123SOMEID…</record> 

    <record>124SOMEID…</record> 

    <record>125SOMEID …</record> 

  </local> 

</keyword> 

<keyword value=’Chronic’> 

  <children>True</children> 

<local> 

</local> 

</keyword> 

 

Once the results are returned, the requestor is 

responsible for applying any Boolean operations on the 

document list to provide basic or extended Boolean 

functionality.  The requestor then makes a second 

request, based on the results of the Boolean operation, to 

the provider for document summary information.  

Additionally, the requestor may, if it is relevant to a 

particular query, send recursive initial messages to the 

children until all relevant nodes have been exhausted. 

The second message response depends on the type of 

record sent.  The response may be simple text snippets, 

or it may contain binary information (coded as ASCII) 

which has thumbnails or video snippets.  Additional 

types of rich responses may be defined through the use 

of custom tags as an extension to the initial 

specification. 

Based on the secondary response, the requestor is then 

able to provide a list of ranked results to the user using 

whatever ranking and display mechanism is appropriate.  

This may include simple result rankings, image 

galleries, or the use of a mapping API to show the 

keywords geographically. 

The final message request is the request for a 

particular record based on the user’s choice above.  The 

record request takes the same form as the patient 

request, though the personally identifiable information is 

stripped and not returned as part of the response to 

sidestep privacy concerns.  An example process flow is 

shown in Figure 6. 

 Fig. 6.  Keyword query process flow 

For automated requests, those where the results will 

be processed directly by a computer, the second request 

message may be skipped and the relevant records 

requested directly. 

2) Advanced Queries 

In addition to the simple query structure noted above, 

DLHC supports a framework which allows for advanced 

queries.  Advanced queries may be of any type defined 

by a particular provider.  A radiology provider may 

allow for similarity matching of tumor features, while a 

public health provider may provide structured querying 

of HL7-based patient records. 

DLHC does not seek to strongly define every possible 

query type (or future possibilities for video and other 

searching).  Instead, DLHC supports locally published 

WSDL to define the services available at a particular 

provider.  An individual requestor may send a “list 
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query services available” message to the provider, and 

will receive the WSDL for any enhanced query abilities 

present. 

 

VI. PATIENT DELETION 

Deleting a particular patient record in a distributed 

system is a non-trivial task.  There are two types of 

deletions – local deletions (delete a record from a 

specific provider) and mass deletions (delete every 

record for a given patient). 

There are multiple reasons for record deletion.  First, 

an organization may have a policy in force that records 

are only maintained for a specific period of time before 

being wiped out.  This may be done for sensitivity 

reasons (a methadone clinic, for example) or for simple 

storage reasons (a high volume emergency room).  

Second, a patient may wish to expunge their own record 

from a specific provider or from the system as a whole.  

Third, specific records may be removed for a batch of 

patients based on class action suits, acts of law, etc. 

When a deletion occurs for a specific provider, the 

record must be deleted from all of the peers of that 

provider as well (though only that distinct record – other 

records for the same patient may be retained). 

For an individual provider deletion, the requestor first 

sends an authenticated query on patient ID.  Based on 

the results of that query, the requestor sends a second 

message containing the same authentication information 

as was used in the query along with the record ID of the 

record to be deleted.  The provider receiving that request 

is then responsible for marking that record as deleted.  

The deletion will be propagated to all of the peers of 

that provider (and to upward indices) based on the 

propagation delays noted above.  In the event a more 

rapid deletion is required, the requestor may individually 

contact all of the peers that hold the record with separate 

deletion requests. 

For a mass deletion, it is the responsibility of the 

requestor to identify locations the patient records exist 

then individually contact providers.  A cascading 

deletion is technically possible, but the potential for 

abuse make the operation too risky to implement, given 

an alternative exists. 

VII. FUTURE WORK 

The DLHC has been defined and examined from a 

framework standpoint, but there is significant room for 

enhancement and extension to the existing model.  

Specific areas for extension include security, querying, 

and geographic replication. 

A. Security 

The design of DLHC takes into account security at a 

base level, but several scenarios bear further evaluation. 

First, while DLHC makes it difficult for a malicious 

provider to come online without collusion, it does not 

prevent subversion through the injection of multiple bad 

records by attacking the platform or implementation of a 

given provider.  While a voting mechanism is 

inappropriate for DLHC, the patient and the record 

creator are the ultimate arbiters of information accuracy 

should a question arise – it is in the detection of issues 

that future work can be done.  A mechanism for patients 

and record creators to be notified of changes to their 

records would be an easy addition. 

Second, DLHC does not put in place an intrusion 

detection capability.  By integrating intrusion detection 

and adding human review of anomalous events, such as 

the requested update of a large volume of data, a further 

layer of security could be achieved.  A simple threshold 

detector based on the number of queries/updates/etc. 

compared to the average would detect denial of service 

attacks. 

Finally, revocation of a malicious node must be done 

on a system-by-system basis.  A more robust mechanism 

for revocation for providers and patients, as well as a 

client authentication mechanism, would increase the 

overall strength of DLHC. 

B. Querying 

While built to be extensible for advanced queries, 

there is the potential to support some advanced queries 

out-of-the-box in the future.  The types of queries 

implemented would depend heavily on the usage models 

seen in practice.   

The first area for query enhancement would be better 

aggregate queries.  These would be variable/value pairs 

used by statisticians to support natural language queries 

where only specific values of certain attributes are 

sought, and a temporal factor is included, such as “How 

many patients where sex=male and age>50 who had 

diabetes were seen in the Midwest last year?” 

The second area for query enhancement would be rich 

media queries.  The search of x-rays for similar fractures 

or the search of a colonoscopy video for key regions of 

interest require more local research before being 

implemented on a distributed scale, but would be of 

great benefit to doctors searching for similar cases. 

C. Redundancy 

The current DLHC design replicates information 
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locally for redundancy purposes.  This follows the 

principle of spatial locality – most searches for records 

will be performed geographically close to where they 

physically reside.  There are two downsides to this 

implementation – redundancy and remote performance. 

For redundancy, using spatially close replication puts 

data at risk for regional catastrophes.  Hurricanes, 

monsoons, tidal waves, earthquakes and other natural 

disasters are regional in nature.  Likewise, human-

caused outages like explosions, digging, and fires can 

have regional impact.  Because of this, the highest level 

of availability that can be achieved on an Internet-

connected system without geographic redundancy is 

asymptotic to 99.95%[64].  One solution might be to 

implement virtual providers that are geographically 

distant but appear on the geographic index as being 

regionally co-located. 

The second concern with locality is performance.  The 

latency associated with a request made thousands of 

miles away will always be greater, on the average, than 

that of a local request.  This is becoming less of an issue 

as long-haul bandwidths increase, but for quick 

responses to queries and updates, having a close copy 

would be useful.  Though this would not affect the 

individual query much based on the spatial locality 

principle, aggregate queries would benefit from closer 

copies.  As with the availability concern above, this 

could be addressed quickly with virtual providers. 

VIII. CONCLUSION 

The Digital Library for Healthcare addresses the need 

for access to electronic patient records using a hybrid 

peer-to-peer and service oriented architecture approach.  

By defining a series of services that sit on top of existing 

systems and are platform independent, and by using 

successful peer-to-peer techniques to perform rapid 

searching and information retrieval, the DLHC’s 

framework is scalable, secure, and has few barriers to 

successful implementation and integration. 
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