
 1

Abstract—The Digital Library for HealthCare (DLHC)

implements a hybrid peer-to-peer network for dissemination,

storage, and querying of electronic patient records. By making

functions available in a service oriented architecture using web

services, the DLHC has a low cost of implementation and a high

degree of extensibility. The DLHC has the ability to support all

types and sizes of records currently available, and has a growth

channel that will support future data needs alongside of historical

record access.

Index Terms—Digital Library, Healthcare, Electronic Patient

Record, Peer to Peer, Service Oriented Architecture.

I. INTRODUCTION

“The future for the application of computers in medicine
is bright. With health care now considered a right rather
than a privilege, the demands on physicians offer a
unique opportunity to use the computer as a ‘physician
assistant.’ Large computer files on patients will be kept,
and decisions made from these files will assist the
physician and health care provider... A computerized
health care system is the answer to these new
demands.” IEEE Computer Magazine, January 1975[1].

Health care information management is a growing

problem with direct impact on patient care. There is

significant current interest in making patient medical

records broadly available to two classes of individual –

the patient and the provider[2]. Much of the research

interest has focused on the role of the patient in

managing their own healthcare information[3-5] and on

the implementation of small-scale systems with a

centralized storage component [6, 7].

The non-distributed implementations put forth to-date

address the concerns of either the patient or the

provider, but are not designed for access by both

classes’ stakeholders who have very different needs.

Additionally, current implementations assume a

Chad M.S. Steel is a PhD student in the Computer Science Department,

Virginia Polytechnic Institute and State University, Falls Church, VA 22043.

This paper is being submitted as a requirement of the qualifying examination

for 2007 in Information Retrieval.

homogenous, structured dataset with centralized records

management by a single source or small number sources.

In reality, there are numerous competing standards for

health information and many records are in proprietary

formats[8].

The DLHC provides a conceptual design which

addresses the shortcomings of current implementations

while providing a solution which maps better to

distributed nature of healthcare information and the

difficulties faced when working with an IT-phobic

audience[9].

To make the DLHC future-resistant and ensure

interoperability with the largest number of datasets, a

Service Oriented Architecture (SOA) design is used. A

set of primitive operations is defined for DLHC rather

than requiring a single interface and/or platform

implementation. The use of a unifying SOA allows

individual requestors the ability to define their own fit-

for-purpose client interfaces as well as the ability to

retrofit the disparate, legacy sources of patient records.

A peer-to-peer (P2P) design is implemented for

communication and data transfer that allows for both

rapid, distributed query fulfillment as well as redundant,

resilient data storage.

II. PRIOR ART

There are multiple relevant peer-to-peer network

designs that DLHC builds upon, and significant work

has been done in making information available in a

SOA. Additionally, there have been several theoretical

implementations of healthcare record systems and, large

scale implementations of non-healthcare libraries

provide a basis for many of the architecture decisions

for the DLHC. Key areas of prior art are detailed below.

A. Peer-to-Peer

Peer-to-Peer networks have been moved from simple

sharing environments like Gnutella[10] to rich content-

sharing and replication systems. In the medical space,

Design of a Distributed Digital Library for

HealthCare (DLHC)

Chad M.S. Steel, Member, IEEE

 2

Huang et al describe the Picture Archiving and

Communication System, PACS[11]. Meant to handle

tens of terabytes of medical data, PACS was designed

primarily as a way to store records off-site rather than a

collaborative tool. Hung-Chang et al describe a more

general approach to content storage in peer-to-peer

networks[12].

Vagelis et al describe a Communications Virtual

Machine meant to mediate different health data, but

without a focus on data redundancy[13]. For general

data reliability, Reiche et al describe approaches to data

reliability in general peer-to-peer networks[14], and

Judge and Ammar document strategies to protect

content[15].

B. Service Oriented Architectures

SOAs are a good fit for health information, given the

limited number and repeatability of tasks a typical

patient looks to perform in a standardized way across

providers [16]. This same concept of operations was

used by Roantree et al in a smaller-scale Common

Object Request Broker Architecture (CORBA)

implementation over a Health Level 7 (HL7) structured

records system[17]. Beyer et al place a system on top of

HL7 and other structured data, but take a use-case

approach to design and add the idea of a consolidated

Master Patient Index (MPI)[18] similar to the patient

index used in DLHC. Both Turner et al and Omar et al

use web services as the foundation for health

information systems in an SOA architecture – Turner to

make available health data as a service and Omar to

build a network of health sensors[19-21].

Earlier work with distributed object technology in the

area of consolidating health records was performed by

Anderson Consulting and presented as part of a

workshop on objects in healthcare[22]. Amendalia et al

built a more robust system that uses the concept of both

simple and complex queries as well as distributed query

processing in an SOA, similar to DLHC for just

mammogram data[23]. Possibly the closest in concept

to DLHC is Integrated Healthcare for the Enterprise

(IHE), noted above as providing an interoperability

standard. Its IHE’s intent to permit interoperability

through an SOA based on web services[24]. DLHC uses

a similar model with the additional benefit of leveraging

peer-to-peer communications.

C. Theoretical Healthcare Management Systems

A theoretical model for healthcare records, TeleMed,

was proposed by Forslund et al which has the unique

capability of integrating the results of a patient record

search from multiple sources[25]. TeleMed is the

closest design to DLHC in that it is a distributed model

and uses a public key authentication mechanism to

ensure privacy. It also has a proposed data mining

function for searching similar images that can be applied

to rich media as in DLHC. Takeda proposes another

theoretical system which incorporates typical hospital

management functions (billing, scheduling, etc.)

alongside a distributed object implementation of record

sharing. The concept of extending the capabilities

beyond individual patient access to institution and

public health access is also used in DLHC[26].

Abiteboul et al further look at a peer-to-peer system

which addresses current privacy concerns using

XML[27]. Finally, Bliykh et al propose a grid-based

approach to national health information management

using a SOA approach, but, like others noted above, rely

on records being in a common format[28].

D. Digital Libraries

Digital libraries address the same issues of rich

content indexing as healthcare records[29], and recent

concerns about digital rights management (DRM)[30]

have corollaries to healthcare records protection.

LOCKSS provides a raw replication framework, with a

focus on securing data for extended period of time,

building on other data replication work [31-33]. The

replication strategy takes into account authorization for

content access, but does not address multiple source

aggregation. Additionally, replication is not done in a

swarm fashion.

Recognizing the benefits of a hybrid peer-to-peer

network, Lu et al use a region-based document retrieval

system which serves as an inspiration for the

hierarchical superstructure in DLHC[34].

III. DESIGN PRINCIPLES

A. Performance

The performance of the DLHC should be suitable for

large scale implementation. For discussion purposes

here and below, the United States healthcare system is

used, but the ultimate design should scale to global

levels. The performance principles are set forth as

follows.

1) Availability

Any medical record held within DLHC should be

available for query and access from any requestor at any

 3

time.

2) Query Time

Any query request should be fulfilled within a

sublinear search time plus the time to transfer the record

contents. This includes system-wide queries, such as an

epidemiologist looking for aggregate disease trends in a

particular state, as well as directed queries, like an

individual searching for their records at a specific

provider. Querying should be optimized for both

keyword and geographic searches.

3) Scalability

The DLHC should be sufficiently robust as to

accommodate dozens of records for each member of the

global population. Query time and performance must

scale at a sublinear rate based on a linear increase in the

number of records, number of providers, and the number

of queries generated.

B. Interoperability

Because of the diverse nature of legacy health

information systems presently used and the inability to

predict future trends, the DLHC must be general enough

to support interoperability with past, present, and future

systems. To ensure the maximum interoperability, the

DLHC defines a high level protocol, a set of metadata,

and a group of operations necessary to achieve the

design goals. The key interoperability design principles

employed are noted below.

1) Legacy Support

The DLHC must support legacy platforms either

natively or through the implementation of appropriate

middleware.

2) Technology Independence

The design decisions should not constrain the

implementation to a single platform or class of

platforms. Additionally, the abstractions should not

require any specific lower-layer network mechanism.

Support for heterogeneous platforms to increase

adoptions and ensure class-attack protection should be

implemented[35].

Schema Independence

The architecture must not require a single schema

and/or data storage format for records. Support for both

structured and unstructured data must be permitted to

prevent existing data stores from needing to either

duplicate data or transform other applications such as

billing systems to support a different format.

C. Security

The regulatory nature of health information globally

requires a high degree of security and privacy to even be

permissible to implement. In the United States, the

Health Insurance Portability and Accessibility Act[36]

strictly regulates the controls over data that must be in

place on systems from covered entities, which include

the providers connecting to DLHC. In other countries,

laws like European Data Protection Act require both

patient control over their records (regardless of location)

as well as restrictions on sharing of personally

identifiable information across national borders, further

complicating implementation[37]. The system design

must take into account these restrictions as well as

future restrictions of a legal nature. The overall security

design principles are detailed below.

1) Confidentiality

DLHC must maintain record confidentiality. Unlike

many other P2P systems, DLHC requires user

intervention and authorization for records release. This

is further complicated by the requirement to transfer

control over records release in cases of emergency and

individual incapacity. The confidentiality requirement

holds for aggregate data as well – the knowledge that a

search hit for an individual name even exists at an

abortion clinic, for example, would provide

inappropriate insight into a record even without

revealing the contents of that record. Maintaining the

confidentiality of the data while at rest and in transit (to

prevent eavesdropping or platform-level disclosure) is a

platform-specific implementation decision outside the

scope of the system architecture.

2) Integrity

Record contents must be maintained without

alteration, either accidental or intentional. The patient

and provider responsible for creation must be the

ultimate arbiters of record contents. Completeness of

the record must be guaranteed as well – the exclusion of

key information such as a drug allergy could result in a

loss of life.

3) Revocability

An individual under European Union law has the right

to revoke access to their information from any provider

at any time. This requires a temporal nature be included

in patient authorizations (to avoid a central revocation

list). This includes the need for a patient to request

deletion of their record from a specific provider as well

as delete information from the entire DLHC.

4) Redundancy

Sufficient redundancy must be present in the DLHC to

prevent the loss of data when a single provider and/or

cluster of providers are lost. This must extend to the

loss of a location through a location failure or loss of

 4

network connectivity.

...

...

Fig 1. DLHC Conceptual Architecture.

IV. ARCHITECTURE

The DLHC makes use of a P2P architecture with a

superimposed geographic hierarchy. The system

consists of two node types – providers and consumers.

Providers are persistent nodes which contain healthcare

records for individuals, whereas consumers are clients

which make queries on providers. In many cases, a

provider is also a client – a doctor’s office may be a

provider that makes available its patient’s records, while

simultaneously acting as a client that queries and obtains

the records for new patients. Fig. 1 shows the

conceptual architecture, with clients shown querying

multiple providers. The providers are shown in a

hierarchical fashion, but this is for conceptual purposes

only – each provider has the same implementation and

maintains patient information and is only hierarchically

arranged for indexing purposes.

Data on patients stored on provider systems in

indexed in three separate ways. First, the provider

hierarchy itself is indexed by geographic region.

Second, patient records are indexed by patient identifier.

Third, key terms from the individual records are

extracted and held in a third, inverted index.

Though the use of separate indices may be suboptimal

for performance compared to hybrid structures[38], they

are more appropriate for the DLHC implementation for

three reasons. First, the indices are segmented

differently – the geographic index serves double duty as

a node list, while the patient indices and keyword

indices are split and localized. Second, the use of the

geographic index is a local search whereas the other

searches are distributed. Third, by using the geographic

index first to identify an appropriate keyword or patient-

record subindex location, hybrid structure performance

is achieved without the added complexity of a more

complicated data structure.

The patient data itself is stored in a hybrid structure

consisting of raw data and superimposed metadata.

There are two main choices for existing data – allow it

to remain in its existing form or transform it into a

defined schema[39]. Choosing to allow the raw data to

remain in its existing form allows for both easy

integration with existing records systems and support for

future systems. Choosing to migrate to a defined

schema enhances the ability to query the information to

approach that of a data retrieval solution. In order to

speed adoption while still allowing for some metadata

being stored, the DLHC defines a metaschema which

coexists with existing structures. The metaschema

defines only three mandatory fields – the patient

identifier, the patient public key and the record identifier

– with other fields added as optional enhancements

depending on the record contents. The remainder of the

record is full-text indexed in its current format without

requiring semantic information. For already-structured

data, the metaschema is extensible enough to include

common patient record fields which can be populated

but are not mandatory. Additionally, fields for

multimedia content such as the transcript from a video,

thumbnails of x-rays, and format information for MRI

scan results are supported to allow for rich client

interfaces and rapid browsing[40].

A. Geographic Index

The individual providers are stored in a hierarchical

index, called the geographic index, maintained in a basic

R-Tree data structure for quick searching. The R-Tree is

used to provide fast querying for areas with both evenly

distributed providers (the East Coast of the United

States) as well as sparse areas (Eastern Siberia)[41].

Though not optimized for all situations, the real world

data is not expected to approach the worst case

scenarios, thereby warranting a more complex structure

[42]. By providing a geographic hierarchy, query

localization can be performed. Examples of

geographical queries may include a patient attempting to

identify online providers in their local area or a county

health department compiling disease statistics.

Providing a geographic index structure additionally

permits the localization of searches for patient

information where a priori information is known about

the record locations.

Each geographic index is replicated in its entirety to

 5

every provider in the DLHC. This is done so that every

peer does not need to respond to every query on the

network – a geographic search for encephalitis cases in

Georgia does not need to engage peers in California.

ProviderID Description MBR Min Lat/Long MBR Max Lat/Long Last Update Last Known IP Parent Child 1..8

4 Bytes 64 Bytes 20 Bits 20 Bits 4 Bytes 4 Bytes 32 Bytes 256 Bytes
Fig 2. Geographic index entry details.

There are approximately 360,000 provider entities in

the United States at the present time (hospitals, clinics,

doctors offices, podiatrists, etc.) and the number is

decreasing with industry consolidation[43] and growth

in provider size (there are fewer individual doctors –

most work in practices). Assuming each provider has a

description of 64 single byte characters1 plus an IP

address (4 bytes) and an associated minimum bounding

rectangle (MBR) (5 bytes to store latitude and longitude

to the second for the bounds), a 32 bit unique identifier,

and a 4 byte date entry for the last update as shown in

Figure 2, each entry can be stored in 81 bytes

uncompressed. Including 288 bytes for child and parent

node pointers, we have a size of 369 bytes per entry,

giving a total size of 127MB for the entire directory.

Assuming a 50% compression ratio (better compression

is possible with fit-for-purpose algorithms, but DLHC

implements standard Lempel-Ziv for compatibility[44]),

the total size of the directory would be 63.5MB, not an

unreasonable size for a one time transfer plus updates at

current bandwidths.

Each of the providers is responsible for defining its

own scope in the MBR. A local doctor’s office would

have a scope consisting of a few miles, whereas a

regional hospital might have a scope that covers dozens

of miles. At the higher levels, a state health association

might cover hundreds of miles and a national

organization the entire US. The MBR should be defined

so as to cover the majority of the patient base for an

organization – a few outlier patients should not increase

the scope of the MBR. In addition to their own records,

regional providers maintain metaindices for patient

records and keywords as described in those index

sections below.

Updates to the geographic database can be performed

by a client or peer request (pull.) Push updates are not

permitted to avoid overloading of the peers by a

malicious and/or misconfigured provider. The details of

the update operations are described below.

For optimized searching of provider names, a client

1 To support double-byte and quad-byte languages, as well as more

detailed descriptions, additional description information can be stored in the

metadata associated with the node itself.

may further index the 360,000 provider descriptions in a

simple inverted index, but this is not an interaction of

the system and is purely client use dependent.

B. Patient Index

The patient index is a simple, sorted list mapping

patients’ identifiers to providers which hold information

about that patient. Each provider must maintain an

index of all patients on their local system, as well as

peer providers under the same regional provider. For

regional providers, an index of all patients of the

provider and its peers as well as an index of patient

records held by sub-providers must be maintained. Due

to the expected sparseness of consolidated regional

metaindices, a reverse mapping of the patients at a

particular subprovider is not maintained.

There are two different types of index entries for

patients – internal and external. Internal entries

correspond to records maintained by the provider itself

(or replicated to the provider from peers). The internal

entries indicate to the provider that it must search its

local system – how the local search is conducted is

dependent on the underlying software and is not relevant

to the DLHC architecture.

External entries indicate patient records exist within a

sub-region of the current index. In the case of state and

national-level providers, an exhaustive search of all sub-

regions may be required to find the one that actually

contains the patient record. While this may be less

efficient overall, it distributes the search request

between multiple peers, it only requires one peer per

sub-region to perform the search, and it allows the

patient record to be a smaller size as it does not require

the storage of specific sub-provider identifier.

PatientID Record Location Last Update Secure Identifier

8 Bytes 1 Byte 4 Bytes 64 Bytes
Fig 3. Patient index record structure.

Unlike the geographic index, the patient index is

expected to grow linearly as time progresses to coincide

the growth in population[45]. As such, the structures

must be searchable in a reasonably fast manner for both

current and historical data. At this point, no provisions

for data expiration (for deceased patients) are planned,

but such provisions could be easily implemented using

the operations provided in the future as needed.

 The patient index is stored as a simple sorted list of

patient identifier records, as shown in Figure 3. Since

the searches on the list are dependent on local resources,

the individual providers can determine how to best

 6

organize local lists, but a B-tree would be a reasonable

structure[46]. Each internal identifier consists of a

unique patient ID (64 bits – enough to handle the growth

in patients for the next several millennia), a last updated

date, a 512-bit public key for the patient, and a record

location indicator.

The use of the public key in authenticating queries is

further detailed below. In the event future

implementations require a larger key (due to advances in

cryptanalysis), the patient identifier record can be

expanded with new record fields without a requirement

for major architectural revisions.

With a per-patient field size of 77 bytes, the size of

the patient list can grow to be fairly large. As an

example, a national-level provider that maintained the

list of all patients in the United States would need

approximately 23 Gigabytes of storage to keep the list.

This allows for efficient identification of the existence

of a record within a given scope while providing

efficient local searching of much smaller provider lists

for regional and local entities.

C. Keyword Index.

The keyword index maintains a list of unique

keywords in an inverted index structure. Each provider

maintains an index of the keywords present in all the

patient records on its system. Because the patient

records for each branch of the geographical index are

replicated to other peers at the same tree level on that

branch, each of these peers will also have the same

index. Because of this, there is no need for an index

synchronization routine – the indices can be updated

locally after the patient records have been synchronized.

As with the patient index, all regional providers must

maintain a keyword index for all peers underneath them

as well as their own local index. Unlike the leaf indices,

these indices will contain only the words that are present

on the lower-geographical scope peers, not pointers to

the specific documents or even providers (for large-

scope indexes) that contain the words.

Based on the above structure, the index for a given

provider’s internal records would be expected to grow at

linear rate and be approximately 15% of the total record

size after compression using standard coding

techniques[47]. Given an average patient record size of

17KB[48] per visit, and a 2.67 visits per patient per

year[49], there would be a total of 13.6 terabytes of text

health data generated annually in the United States. An

average data size of 38GB per provider per year would

be generated based on the above numbers2. Given the

15% above, the average index would grow linearly at a

rate of 5.7GB per year.

Since the metaindices held on regional providers do

not contain pointers to data (other than their own

internal patient data), they are not expected to grow at

the same rate as the individual provider indices.

Because of this, the metaindices would be expected to

grow at a sublinear rate based on Zipfs Law[50]. Given

the search efficiency of a B-tree as an example index

structure, this would mean a log(log(N)) annual increase

in search time, much slower than the expected growth in

processing speed and memory availability[51],

indicating search times would improve faster than data

growth would inhibit their speed.

For local provider keyword indices, a mapping of

keywords to individual patient records is maintained as

another simple inverted index structure. These are

maintained as an inverted index with a pointer into a list

of unique record identifiers which identify the actual

patient records.

To reduce the size of the index (and more importantly,

to limit the time spent on fruitless querying for this

application) key stopwords are removed. Because the

structured nature of patient records is such that certain

words will likely appear in every record (e.g. name,

address, sex, etc.), DLHC uses a custom stopword list as

well[52].

D. Patient Records

With competing standards for the implementation of

Healthcare records, frequently referred to as Electronic

Health Records (EHRs), the DLHC must retain broad

compatibility with legacy, emerging, and future

implementations. Existing standards include Health

Level 7’s Clinical Document Architecture, the

OpenEHR initiative, the Integrated the Healthcare

Enterprise’s Cross-Enterprise Document Sharing (IHE-

XDS), and newer systems built upon Medical Markup

Language[8]. Because of the competing standards, the

DLHC is built to sit on top of existing records systems

and allows individual providers the ability to leverage

the semantic structure of these libraries while still

retaining compatibility with unstructured and

proprietary records systems.

DLHC defines a metaschema, a schema that sits on

top of existing schemas. The metaschema has three

required components, a 64-bit patient identifier, a 512-

2 No studies indicating the distribution of patients per facility on the above

provider statistics are available, so a simple mean calculation is used.

 7

bit patient public key and a second 64-bit record

identifier.

The 64-bit patient identifier is unique to the entire

DLHC network. When a patient is added to the system,

a random 64-bit identifier is generated. This identifier is

then searched for on the DLHC – if it does not exist, it is

assigned to the new patient. If it does exist (a one in

3x10
9
 likelihood), a new random identifier is generated

until a unique identifier is found. Once an identifier is

generated, the patient generates a public and a private

key using an elliptical curve algorithm. The use of

elliptical curve cryptography (ECC) over systems like

the RSA suite of algorithms or el Gamal was done to

minimize the key length. ECC requires a key size of

approximately twice that used in traditionally symmetric

algorithms, instead of ten to twenty times the size as

required by other public key approaches[53]. Given the

storage of uncompressable public keys in a large index

structure, the key length is an important consideration.

The public/private key pair can be generated either by

the provider’s system or patient generated. The provider

generated key provides simplicity, but the private key

will be available to the provider, if only briefly.

Additionally, a mechanism to transmit the private

portion to the patient either through email or locally on a

smartcard or USB key is needed. A patient-generated

key would require the patient to give the public key to

the provider after generation. This has the advantage of

allowing the patient to generate their own key offline,

and ensure they are the only ones with access to the

private portion.

Though both approaches are supported, DLHC

recommends the former approach to enable an added

benefit – key escrow. When a patient selects a primary

care physician, that physician can become an escrow

agent for the patient’s private key. In the event of

patient incapacity or patient death, the physician can

authorize the disclosure of patient information on their

behalf.

The 64-bit record identifier is used to provide a

unique ID for each record in the DLHC. The ID

consists of a sequential 32-bit identifier generated by the

provider, prefixed with the provider’s own unique ID.

The remainder of the metadata is optional and is

stored in two sections – one for personally identifiable

information (PII) and the second for non-PII medical

information. The PII information is protected (and can

be encrypted with the patient’s private key if supported

by a particular implementation). The non-PII section is

not encrypted and can be searched using a parser for

providers that support a richer query language. If the

medical records are already in a markup language like

MML[54], the entire record becomes the second half of

the metaschema. If the record is in a proprietary format,

the data can be translated to MML and/or the raw text

extracted and used for basic keyword searches on the

second portion of the metaschema. A sample record is

displayed in Figure 4.

Preamble Record ID Patient ID Public Key

64 Bits 64 Bits 512 Bits

PII Personally Identifiable Information

in MML

Non-PII Non Personally Identifiable

Information in MML

Original Note: This may be transformed to

Record the above metaschema format

and the original removed or

archived. There is no prescribed

format for original records.

Fig. 4. Metaschema for medical records.

E. Provider

The provider architecture is intended to be platform

and language independent. In fact, having multiple

providers developed using different languages for

different platforms provides protection against platform

or language specific flaws that may arise in the

future[55].

The high level structures to be implemented by the

provider are noted above. To achieve interoperability

with clients and each other, both a common set of

routines and a unifying communication mechanism must

be implemented. The routines to be used are detailed

below, and the communication mechanism is detailed

here.

Each provider consists conceptually of a

communicator, an indexer, a search agent, and a

synchronization agent. The communicator provides a

mechanism for contacting and receiving contact with

external entities. The indexer maintains the individual

indices noted above and provides indexing on new

documents as they are added. The search agent

performs internal searches in response to queries. The

synchronization agent is responsible for ensuring the

integrity of individual patient records. Note these are

 8

logical functions of the provider, not actual modular

implementations. The specific modular breakdown is

determined by the implementer.

The communicator will operate using web services as

the communications model. The underlying transport

will utilize the Simple Object Access Protocol

(SOAP)[56] to interact with both clients and other

providers. SOAP was chosen both for its simplicity and

for the availability of existing libraries to draw upon for

new provider development. As an added benefit,

extensive security extensions are available to ensure

transport-level security without requiring additional

design[57]. WSDL[58] is not needed as the operations

are already predefined, though it may be used for

individual providers to make available a more extensive

search capability. Additionally, UDDI[59] is not needed

since there is no centralized directory of these services

(it is distributed).

The indexer structures are defined above. The

specific tokenization and parsing tools implemented by

the indexer will be specific to the existing record

formats used by the underlying record structures. As an

example, an indexer for video transcriptions would need

to perform speech-to-text conversion, whereas an index

for MML information would need to understand XML.

As an additional task, the indexer is responsible for

populating and updating all of the components of the

metaschema as records change, except for the preamble.

As an added security feature, the indexer must remove

any references to patient name or other personally

identifiable information from the parsed data so it is not

included in the indices. To respond to rich-media

requests, the indexer is generates any non-textual media

abstractions supported, including thumbnails and

summaries[40].

The search agent provides a link between the SOAP

requests and the underlying data. When a search request

is received, the search agent queries the appropriate

index. In the case of the patient index, the search agent

first verifies the validity of the request by decrypting a

nonce provided by the communicator to the requestor

using the appropriate patient public key. If it matches,

the hits are returned. If it does not match, no data is

returned – the same result as if there is no record

available. The details of this transaction are shown in

Figure 5.

Provider 1 Provider 2

Patient ID and request for record search

Agree to search. Request P1 public key.

Send P1 public key

Send P2 public key and nonce

Encrypted with P1 public key

Send nonce encrypted with patient

 private key

Send results encrypted with P1 public key

Fig. 5. Patient authentication for searching.

The synchronization agent is responsible for keeping

the indices replicated with same-tier peers and in the

case of regional providers for lower-tier peers.

Additionally, the synchronizer is responsible for

maintaining record accuracy with peer record sets. For

index updates, the synchronization agent requests all

peer entries which have changed in the past 24 hours

according to the last updated date. To maintain date

accuracy, all dates are kept based on Coordinated

Universal Time (UTC)3. For deleted items, the

synchronization agent maintains a simple list of deleted

entries with the time of deletion. These are discarded

every thirty days on a rolling basis. If a system is offline

for a longer period, it must perform a full replication

with a peer system to come back online.

For patient records themselves, the synchronization

agent is sent a torrent-like file with links to all of the

information on that file. Using the standard BitTorrent

protocol, the patient record is then downloaded from all

peers which maintain that record, reducing the download

impact on any one peer[60]. In addition to the use of

torrents, only those portions of records that have

changed are replicated. Using the Rsync algorithm and

a series of hash values, DLHC is able to only send

changed and/or added portions of text and not entire

records where only a portion of a record has

changed[61].

F. Client

The client architecture is largely undefined in DLHC

3 Keeping the resolution to the specific date means that clients must make

requests from a specific provider if they need results before 24 hours have

elapsed. If more frequent updates are required by a provider, it can

synchronize more frequently and assume any entries with the current date

require updating. The additional overhead is expected to be minimal in terms

of transfer bandwidth.

 9

to provide for a large array of client needs. A simple

web interface which allows an individual to bring back

their own patient record after providing their private key

might be the simplest form of interface. A more

complex interface may be used by a national health

system which needs to obtain aggregate statistics on a

full geographic region. These statistics might require a

complex search of both MML and non-MML formatted

records.

Because of the diverse needs, the clients can be

considered providers without peer-to-peer replication

responsibilities (since providers can also be clients).

Because this DLHC uses a service oriented architecture

whereby the clients are merely electronic consumers that

treat the entire DLHC system as one large provider.

V. OPERATIONS

There are several key operations which DLHC

implements to provide the functionality detailed above,

all of which are made accessible as web services. The

operations can be separated into two categories - updates

and queries.

A. Updates

There are three specific update types that are

supported by DLHC – peer updates, parent->child

updates, and child->parent updates. Each type is

addressed individually below.

1) Peer Updates

Peer updates represent the synchronization of data

between peers. There are three specific peer update

operations – updating the patient index, updating the

geographic index, and updating a patient record.

Additionally, there is a rebuild operation defined for

peers which are damaged and/or new peers being added.

Peer operations are performed between members that

share the same parent node. There will be a maximum

of eight peers in any particular level, and each peer

agrees to maintain an amount of storage capable of

replicating data from each of the other seven nodes. In

the event there is a substantially uneven distribution of

data, the largest of the peers will have their geographic

scopes expanded and be placed in a parent position.

The geographic index update occurs on a daily basis

at a minimum. Because the addition and removal of

providers is an infrequent event (at the local level –

system-wide it is still infrequent when compared to

patient index updates), and the index structure has the

ability to grow within a given level (up to eight peers),

major changes to the overall geographic index are

uncommon. As with the other updates, scheduling on a

daily basis permits the scheduling of updates during

times of low system usage.

To update the geographic index, the synchronization

agent on a given peer sends a request to all of the other

peers listed in its current geographic index. The only

information passed in the request (other than node

identification) is the time of last update. The peer

receiving the request then sends back any changes in its

geographic tree which have occurred since the last

update time provided in a single set of records, prefixed

as being adds, updates, or deletes, along with the

associated changes to the record. The records are sent in

an XML document update with a simple MD5 hash

value appended to ensure accurate transmission.

If the last update time is longer than thirty days prior,

the peer receiving the request sends a “request denied”

response. Additionally, if a malformed request is

received or a request is received from a node listed as

“deleted”, a “request denied” is sent. If there are no

updates, a “no update” response is received.

The sender of the request waits until all of the peer

updates have been received or a timeout has been

reached. All of the peer updates received before the

timeout are then merged, with discrepancies settled by

using the most current last update time.

If a node does not respond by the timeout period, it is

added to a “to delete” list which is kept locally. If the

node does not respond after thirty days, it is deleted

from the geographic index.

The update of patient indices proceeds in exactly the

same fashion as the geographic index. Because there is

a potential for a large number of patient index updates

over the course of a day, these updates are likewise

scheduled for daily update at low bandwidth utilization

periods.

Each of the updates noted above has up to eight

different requests. Because the update is a one-way

synchronization, there are 192 maximum updates which

would occur daily on a given level within the geographic

tree. While this appears substantial, the amount of data

transferred for these updates is likely to be small, with

the patient index being the larger of the two.

A large provider, such as the University of Chicago

Hospital, may see an average of 1,095 patients per

day[62]. Assuming 8 peers are all very large providers,

this would mean 1,095 x 7 = 7,665 updates per peer per

update in terms of actual updates. In reality, because

duplicate updates are sent, the last peer might actually

have 7,665 x 7 = 53,665 as a worst-case update received.

Given the size of the patient record, this would result in

 10

a worst-case update of 4.1 MB per day4, well within

acceptable bandwidth limits.

The most costly peer operation is the patient record

synchronization. Given the numbers above, a high

volume hospital may have 1,095 updates at 17KB per

update. This yields 1,095 x 17KB = 19MB per peer, for

a maximum of 19MB x 7 = 177 MB total at a given

level generated daily. If the same synchronization

routine as above were used, the impact may be

signification. As such, a different synchronization

operation is performed.

The patient record synchronization occurs after

updating the patient index. For each of the new patient

index records processed (not received as there are

potential duplicates), a different request is generated

based on the type of record change – either an addition

or an update request.

Addition requests consist of two messages. First, a

request is sent to all peers consisting of the record

identifier. Each of the peers responds back with either a

“record available” or a “record not available” response.

The record available response consists of the record

number, the last update date and time (from the record

itself), the record size, an MD5 hash of the record

contents, and a list of the available sections in the format

of section name/section start byte/section end byte.

Segment size is determined as MAX[record size/1024,

1KB].

The requestor evaluates each of the record available

responses and compares the hash values. The most

recently updated record is considered the master record.

The requestor uses the MD5 hash of the master record to

identify other records with the same content.

Once the additional records with the same content are

identified, the requestor sends a series of additional

messages to each of these providers requesting segments

in a round-robin fashion. Because segments are

requested in parallel round-robin, slower connections

will automatically send less data. As with all of the

messages, a timeout will identify non-responding

providers.

Updates are more complex than additions. For each

updated record, the same initial message used for

additions is sent to each peer and the same algorithm for

determining which peers to request from is used. Next,

a decision is made on which update to use as follows:

If (RecordSize<SizeThresholdLow) Then

 Update Entire File

4 This does not include envelope overhead and protocol overhead. Even at

a 50% overhead rate, a size of 6.15MB is still acceptable.

Else

 If (OldRecordSize/NewRecordSize<PercentThreshold)

 Update Entire File

 Else

 Run Rsync on a segment-by-segment basis

The two thresholds are used to avoid the overhead

associated with Rsync on very small changes and very

large changes. For very small files, where the size of the

file is less than a low threshold (determined by each

provider based on their bandwidth availability), the file

is simply retransmitted as a whole. Similarly, for very

large files where there is a very large growth in file size

(through the addition of an endoscopy video to an

existing text record, for example) the entire record is

treated as an addition. A reasonable threshold might be

to use Rsync when the previous record is larger than

10% of the size of the new record.

For those records for which an update is warranted,

the same round robin algorithm is used as for additions

with two changes. First, the segment size is determined

by the requestor based on their bandwidth availability.

Larger segments are used to make Rsync more efficient.

Second, for each segment used, the full Rsync operation

is performed with one of the peers to only send the

updates to that segment in a back-and-forth series of

messages[63].

The final update operation for a peer is a bootstrap.

The bootstrap is run in one of three situations – the peer

is irreparably damaged, the peer represents a new node,

or the peer has been out of sync for more than thirty

days. A bootstrap may be performed offline (by copying

the indices and records from an existing provider to

tape) or online (through the bootstrap operation).

Fig. 6. Bootstrap process.

To bootstrap a new node, an out of band

communication is made to identify at least one node in

the DLHC. That node then gives authorization to the

new node to bootstrap (the authorization process is

outside the scope of this paper and may be either an

online process of key exchange or an offline process –

the end result being an authentication and authorization

token that is given to the new peer and a new provider

 11

ID). The peer bootstrap process is shown in Figure 6.

2) Parent->Child Updates

Parent->Child updates are updates where a parent

requests updates from a child node. These updates are

more frequent than peer updates, and are substantially

smaller in size. In addition to the peer index updates, a

keyword index update is performed. Patient records are

not updated to parent nodes.

To update its geographic index, a parent node (defined

as any node that has children) first sends a simple

polling request to each of its child nodes. This poll

request consists of a single “are you alive” message and

response. If a child node is found to not be available,

the parent stores that in a list. Any child nodes not

responding for forty eight hours are considered

temporarily lost, and those not responding for thirty

days permanently lost. For available nodes, the same

synchronization used by peers is performed, but the

request is made to every child (instead of just one child)

and it is made every hour to reduce propagation time as

described below.

For nodes that are temporarily lost, the parent node is

responsible for routing requests to any grandchildren

directly under that node. As such, the parent node

begins to poll those nodes until the old child comes back

into operation. This is done in a recursive fashion up to

a pre-defined limit based on the capacity of the parent.

Any permanently lost nodes are removed by the parent

and the geographic index reorganized as appropriate.

 Patient record index updates are made with all

children, similar to geographic updates. These indices

are updated in the same fashion as peer updates, except

the frequency is hourly instead of daily.

The keyword index updates are different than the

other indices, given the potentially larger update

volume. In addition to the index words themselves, each

child maintains a first added (as opposed to a last

updated) date with each word. Every hour, the parent

node sends a request for keyword updates to each of its

children. The children each respond with an XML

document containing all of the keywords that have been

added or deleted in the past day, with an MD5 checksum

of the entire document. If the MD5 sums match, the

keyword lists for all of the peers are merged into a

single list, with duplicates removed. Each keyword is

then merged into the parent’s list of external keyword

entries.

3) Child->Parent Updates

The reverse of the parent child update, the child

parent update ensures child nodes are synchronized with

parent nodes for geographic index purposes (patient and

keyword indices and patient records are not downward-

propagated).

The geographic updates are performed on an hourly

basis and take the same form as the previous updates in

reverse. If a child node cannot contact its parent for

greater than forty eight hours, it contacts a peer of its

parent node for updates. If the node is unavailable for

thirty days, the update with the parent’s peer will

automatically propagate the new geographic index (with

a new parent) to the child.

4) Propagation Delay

There is a potential delay inherent in the DLHC for

querying based on the propagation times of updates and

the position being queried. The further the geographic

distance between the client and the provider holding the

record, the longer the potential delay.

There are two specific delay times to worry about –

geographic propagation delays and patient/keyword

propagation delays. The geographic propagation delays

are potentially twice as long as the other delays, as they

must propagate up and down the tree structure in the

worst case scenario.

With a maximum child size of eight and a minimum

child size of two (the worst case), the propagation delays

can be easily calculated from the DLHC size. Per

above, with a DLHC containing 360,000 providers

would have a minimum depth of seven and a maximum

depth of nineteen.

For geographic indices, the maximum propagation in

the worst case would be eighteen hours for upward

propagation and an additional eighteen hours for

downward propagation given the hourly inter-level

updates, for a maximum of thirty six hours. This case

occurs when a new provider is added to a leaf node.

Since a new provider’s information wasn’t previously

available, this is an acceptable propagation time. The

inter-level update frequencies could be shortened as

needed to reduce this time.

Keyword and patient index requests are only

propagated upward. Assuming the same levels as above,

the maximum propagation delay for these would be

eighteen hours. If more timely access to query

information is required, individual provider queries

and/or lower regional queries can be performed.

B. Queries

There are two types of queries supported by the

DLHC – simple and complex. The simple query

interface is designed to be easy to use and well defined,

while the complex query interface is meant to be

 12

flexible and allow for many different types of query

operation.

At the heart of the simple query operation are three

basic assumptions:

1. The most common query will be a request for a

particular patient record. The system should be

optimized for this.

2. Most records have a particular geographic scope

associated with them. An individual living in

Saratoga Springs, New York is more like to have

a record in Albany than Azerbaijan.

3. Keyword searches can form the basis for more

powerful searching. Complex queries making use

of semantic information can be performed as an

offshoot of keyword queries.

Based on the above assumptions, the two different

query interfaces are defined below.

1) Simple Queries

There are three query types supported by the simple

query interface – geographic scope queries, keyword

queries, and patient ID queries. The simple query

interface can be used with all three query types at once,

and “simple” is meant to denote the interface as opposed

to the power of these queries.

The simplest query is the geographic query, which

returns all of the providers within a particular

geographic region. Because this particular query is

intended as a building block for use with the other

queries, it is handled locally by each provider and/or

client.

Since the geographic index is maintained locally, the

geographic query consists of a simple navigation of the

R-tree. Because every provider and client maintains a

copy of the geographic index, there is no functionality

provided for remote geographic searching.

The user interface design is not part of the

specifications, but either text-based (type in a zip code

and radius) or graphical interfaces are readily supported

by the underlying structure.

The patient record query is a simple query for a

patient record based on a patient ID. Because the

patient query is percolated upward in the geographical

index structure, the query can be performed at any layer

from the root entries down. Because the root entries are

likely to restrict direct querying, it makes sense to

couple patient queries with a geographic query by

selecting a starting scope where the expected record or

records may reside.

The patient query starts at a particular provider that

completely contains the region to be searched. The

client contacts that provider directly, and that provider

searches its own patient index. There are five possible

search results:

• Patient record not found. There is no patient

record that matches the identifier present in the

hierarchy.

• Authentication failure. The authentication failed

on accessing the patient record. The response

sent back is a “patient record not found” response

to prevent guessing attacks.
5

• Record found locally. The record is available

from peers at this level.

• Record present on child providers. The record is

present on a child node.

• Record present locally and on child providers.

Multiple records exist at a local and sublocal

level.

If the record or records are present locally, the

response includes the record identifier, the record size,

and an MD5 hash of the record contents. The requestor

then contacts the other peers associated with that record

to determine if it is present on their systems. If it is, the

requestor breaks up the record into segments and

requests individual segments from each of the peers.

The peer responses to the segment requests are

encrypted with the key established in the original

authentication request to prevent eavesdropping or

insertion attacks.

If a record is identified as being below a particular

geographic scope, that fact is returned to the requestor.

The requestor then recursively queries each of the

identified lower-level providers until the record is

found.

The difficulty with the patient query is centered on

accidental disclosure of a patient record to an

unauthorized individual. While sanitized records (those

stripped of PII) are permissible for open sharing, full

records must be protected, hence the structure and

procedure identified for authentication in Figure 5.

Because of the confidentiality restrictions, a mapping

of patient ID’s to patient names is not done centrally.

This may seem like needed functionality, but given the

ambiguity of names (e.g. John Smith) and the ability to

associate patient ID’s with a particular provider if you

are a regional provider or have access to a regional

provider’s data, this is not feasible from a privacy

perspective.

The final and most complex query operation is the

keyword query. As with the patient query, the keyword

5 A timer delay with a random amount of wait time can be built in to

defeat timing attacks.

 13

query is generally coupled with a geographic query.

Global queries may be supported for certain providers,

however, to allow for the generation of overall global

statistical data.

The keyword query begins by identifying a provider

with a specific scope. The provider is then sent up to

three messages – once to determine if there are matching

keywords at or below that provider’s scope, and a

second time to request summaries of documents that

match those keywords. Finally, individual messages

requesting specific patient records are sent.

The initial message takes the form of an XML

message with individual keywords. The response back

is one of four possible messages, there are no hits, there

are local hits, there are child hits, or there are both local

and child hits. An example return message snippet

might be as follows:

<keyword value=’Asbestosis’>

 <children>True</children>

 <local>

 <record>123SOMEID…</record>

 <record>124SOMEID…</record>

 <record>125SOMEID …</record>

 </local>

</keyword>

<keyword value=’Chronic’>

 <children>True</children>

<local>

</local>

</keyword>

Once the results are returned, the requestor is

responsible for applying any Boolean operations on the

document list to provide basic or extended Boolean

functionality. The requestor then makes a second

request, based on the results of the Boolean operation, to

the provider for document summary information.

Additionally, the requestor may, if it is relevant to a

particular query, send recursive initial messages to the

children until all relevant nodes have been exhausted.

The second message response depends on the type of

record sent. The response may be simple text snippets,

or it may contain binary information (coded as ASCII)

which has thumbnails or video snippets. Additional

types of rich responses may be defined through the use

of custom tags as an extension to the initial

specification.

Based on the secondary response, the requestor is then

able to provide a list of ranked results to the user using

whatever ranking and display mechanism is appropriate.

This may include simple result rankings, image

galleries, or the use of a mapping API to show the

keywords geographically.

The final message request is the request for a

particular record based on the user’s choice above. The

record request takes the same form as the patient

request, though the personally identifiable information is

stripped and not returned as part of the response to

sidestep privacy concerns. An example process flow is

shown in Figure 6.

 Fig. 6. Keyword query process flow

For automated requests, those where the results will

be processed directly by a computer, the second request

message may be skipped and the relevant records

requested directly.

2) Advanced Queries

In addition to the simple query structure noted above,

DLHC supports a framework which allows for advanced

queries. Advanced queries may be of any type defined

by a particular provider. A radiology provider may

allow for similarity matching of tumor features, while a

public health provider may provide structured querying

of HL7-based patient records.

DLHC does not seek to strongly define every possible

query type (or future possibilities for video and other

searching). Instead, DLHC supports locally published

WSDL to define the services available at a particular

provider. An individual requestor may send a “list

 14

query services available” message to the provider, and

will receive the WSDL for any enhanced query abilities

present.

VI. PATIENT DELETION

Deleting a particular patient record in a distributed

system is a non-trivial task. There are two types of

deletions – local deletions (delete a record from a

specific provider) and mass deletions (delete every

record for a given patient).

There are multiple reasons for record deletion. First,

an organization may have a policy in force that records

are only maintained for a specific period of time before

being wiped out. This may be done for sensitivity

reasons (a methadone clinic, for example) or for simple

storage reasons (a high volume emergency room).

Second, a patient may wish to expunge their own record

from a specific provider or from the system as a whole.

Third, specific records may be removed for a batch of

patients based on class action suits, acts of law, etc.

When a deletion occurs for a specific provider, the

record must be deleted from all of the peers of that

provider as well (though only that distinct record – other

records for the same patient may be retained).

For an individual provider deletion, the requestor first

sends an authenticated query on patient ID. Based on

the results of that query, the requestor sends a second

message containing the same authentication information

as was used in the query along with the record ID of the

record to be deleted. The provider receiving that request

is then responsible for marking that record as deleted.

The deletion will be propagated to all of the peers of

that provider (and to upward indices) based on the

propagation delays noted above. In the event a more

rapid deletion is required, the requestor may individually

contact all of the peers that hold the record with separate

deletion requests.

For a mass deletion, it is the responsibility of the

requestor to identify locations the patient records exist

then individually contact providers. A cascading

deletion is technically possible, but the potential for

abuse make the operation too risky to implement, given

an alternative exists.

VII. FUTURE WORK

The DLHC has been defined and examined from a

framework standpoint, but there is significant room for

enhancement and extension to the existing model.

Specific areas for extension include security, querying,

and geographic replication.

A. Security

The design of DLHC takes into account security at a

base level, but several scenarios bear further evaluation.

First, while DLHC makes it difficult for a malicious

provider to come online without collusion, it does not

prevent subversion through the injection of multiple bad

records by attacking the platform or implementation of a

given provider. While a voting mechanism is

inappropriate for DLHC, the patient and the record

creator are the ultimate arbiters of information accuracy

should a question arise – it is in the detection of issues

that future work can be done. A mechanism for patients

and record creators to be notified of changes to their

records would be an easy addition.

Second, DLHC does not put in place an intrusion

detection capability. By integrating intrusion detection

and adding human review of anomalous events, such as

the requested update of a large volume of data, a further

layer of security could be achieved. A simple threshold

detector based on the number of queries/updates/etc.

compared to the average would detect denial of service

attacks.

Finally, revocation of a malicious node must be done

on a system-by-system basis. A more robust mechanism

for revocation for providers and patients, as well as a

client authentication mechanism, would increase the

overall strength of DLHC.

B. Querying

While built to be extensible for advanced queries,

there is the potential to support some advanced queries

out-of-the-box in the future. The types of queries

implemented would depend heavily on the usage models

seen in practice.

The first area for query enhancement would be better

aggregate queries. These would be variable/value pairs

used by statisticians to support natural language queries

where only specific values of certain attributes are

sought, and a temporal factor is included, such as “How

many patients where sex=male and age>50 who had

diabetes were seen in the Midwest last year?”

The second area for query enhancement would be rich

media queries. The search of x-rays for similar fractures

or the search of a colonoscopy video for key regions of

interest require more local research before being

implemented on a distributed scale, but would be of

great benefit to doctors searching for similar cases.

C. Redundancy

The current DLHC design replicates information

 15

locally for redundancy purposes. This follows the

principle of spatial locality – most searches for records

will be performed geographically close to where they

physically reside. There are two downsides to this

implementation – redundancy and remote performance.

For redundancy, using spatially close replication puts

data at risk for regional catastrophes. Hurricanes,

monsoons, tidal waves, earthquakes and other natural

disasters are regional in nature. Likewise, human-

caused outages like explosions, digging, and fires can

have regional impact. Because of this, the highest level

of availability that can be achieved on an Internet-

connected system without geographic redundancy is

asymptotic to 99.95%[64]. One solution might be to

implement virtual providers that are geographically

distant but appear on the geographic index as being

regionally co-located.

The second concern with locality is performance. The

latency associated with a request made thousands of

miles away will always be greater, on the average, than

that of a local request. This is becoming less of an issue

as long-haul bandwidths increase, but for quick

responses to queries and updates, having a close copy

would be useful. Though this would not affect the

individual query much based on the spatial locality

principle, aggregate queries would benefit from closer

copies. As with the availability concern above, this

could be addressed quickly with virtual providers.

VIII. CONCLUSION

The Digital Library for Healthcare addresses the need

for access to electronic patient records using a hybrid

peer-to-peer and service oriented architecture approach.

By defining a series of services that sit on top of existing

systems and are platform independent, and by using

successful peer-to-peer techniques to perform rapid

searching and information retrieval, the DLHC’s

framework is scalable, secure, and has few barriers to

successful implementation and integration.

REFERENCES

[1] J. Prow, "32 & 16 Years Ago," in IEEE Computer. vol. 40, 2007,

p. 15.

[2] W. Pratt, K. Unruh, A. Civan, and M. M. Skeels, "Personal health

information management," Communications of the ACM, vol. 49,

pp. 51-55, 2006.

[3] J. J. Cimino, V. L. Patel, and A. W. Kushniruk, "What do patients

do with access to their medical records?," Medinfo, vol. 10, pp.

1440-4, 2001.

[4] B. Fisher, R. Fitton, C. Poirier, and D. Stables, "Patient record

access--the time has come," Stud Health Technol Inform, vol. 121,

pp. 162-7, 2006.

[5] C. C. Tsai and J. Starren, "msJAMA. Patient participation in

electronic medical records," Jama, vol. 285, p. 1765, 2001.

[6] V. Masero, "Health care information systems," in Proceedings of

the 2005 ACM symposium on Applied computing Santa Fe, New

Mexico: ACM Press, 2005.

[7] J. J. Cimino, V. L. Patel, and A. W. Kushniruk, "The patient

clinical information system (PatCIS): technical solutions for and

experience with giving patients access to their electronic medical

records," Int J Med Inform, vol. 68, pp. 113-27, 2002.

[8] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B. Laleci,

"A survey and analysis of Electronic Healthcare Record

standards," ACM Comput. Surv., vol. 37, pp. 277-315, 2005.

[9] M. B. Moore, "Acceptance of information technology by health

care professionals," in Proceedings of the symposium on

Computers and the quality of life Philadelpia, Pennsylvania,

United States: ACM Press, 1996.

[10] "Gnutella Homepage," http://www.gnutella.com. Accessed On:

January 15, 2007

[11] H. K. Huang, Z. Aifeng, L. Brent, Z. Zheng, D. Jorge, K. Nelson,

and L. W. C. Chan, "Data grid for large-scale medical image

archive and analysis," in Proceedings of the 13th annual ACM

international conference on Multimedia Singapore: ACM Press,

2005.

[12] H. Hung-Chang and K. Chung-Ta, "Modeling and evaluating peer-

to-peer storage architectures," in Proceedings of the Parallel and

Distributed Processing Symposium, pp. 24-29, 2002.

[13] H. Vagelis, J. C. Peter, P. Nagarajan, D. Yi, A. W. Jeffrey, and P.

B. Redmond, "A flexible approach for electronic medical records

exchange," in Proceedings of the international workshop on

Healthcare information and knowledge management Arlington,

Virginia, USA: ACM Press, 2006.

[14] S. Rieche, K. Wehrle, O. Landsiedel, S. Gotz, and L. Petrak,

"Reliability of data in structured peer-to-peer systems," pp. 108-

113, 2004.

[15] P. Judge and M. Ammar, "CITADEL: a content protection

architecture for decentralized peer-to-peer file sharing systems,"

pp. 1496-1500, 2003.

[16] K. A. Stroetmann, M. Pieper, and V. N. Stroetmann,

"Understanding patients: participatory approaches for the user

evaluation of vital data presentation," in Proceedings of the 2003

conference on Universal usability Vancouver, British Columbia,

Canada: ACM Press, 2003.

[17] M. Roantree, J. Murphy, and W. Hasselbring, "The OASIS

multidatabase prototype," SIGMOD Rec., vol. 28, pp. 97-103,

1999.

[18] M. Beyer, K. A. Kuhn, C. Meiler, S. Jablonski, and R. Lenz,

"Towards a flexible, process-oriented IT architecture for an

integrated healthcare network," in Proceedings of the 2004 ACM

symposium on Applied computing Nicosia, Cyprus: ACM Press,

2004.

[19] W. M. Omar and A. Taleb-Bendiab, "Service Oriented

Architecture for E-health Support Services Based on Grid

Computing Over," in Proceedings of the IEEE International

Conference on Services Computing (SCC'06) - Volume 00: IEEE

Computer Society, 2006.

[20] M. Turner, F. Zhu, I. Kotsiopoulos, M. Russell, D. Budgen, K.

Bennett, P. Brereton, J. Keane, P. Layzell, and M. Rigby, "Using

Web Service Technologies to Create an Information Broker: An

Experience Report," in Proceedings of the 26th International

Conference on Software Engineering: IEEE Computer Society,

2004.

[21] W. M. Omar and A. Taleb-Bendiab, "E-health support services

based on service-oriented architecture," IT Professional, vol. 8,

pp. 35-41, 2006.

[22] A. Shail, "Object-oriented technology for health care and medical

information systems: workshop report," in Addendum to the

proceedings of the 10th annual conference on Object-oriented

programming systems, languages, and applications (Addendum)

Austin, Texas, United States: ACM Press, 1995.

[23] S. R. Amendolia, F. Estrella, R. McClatchey, D. Rogulin, and T.

Solomonides, "Managing Pan-European mammography images

and data using a service oriented architecture," pp. 99-108, 2004.

 16

[24] E. Vasilescu and S. K. Mun, "Service Oriented Architecture

(SOA) Implications for Large Scale Distributed Health Care

Enterprises," pp. 91-94, 2006.

[25] D. W. Forslund, R. L. Phillips, D. G. Kilman, and J. L. Cook,

"Experiences with a distributed virtual patient record system,"

Proc AMIA Annu Fall Symp, pp. 483-7, 1996.

[26] H. Takeda, Y. Matsumura, S. Kuwata, H. Nakano, N. Sakamoto,

and R. Yamamoto, "Architecture for networked electronic patient

record systems," Int J Med Inform, vol. 60, pp. 161-7, 2000.

[27] S. Abiteboul, B. Alexe, O. Benjelloun, B. Cautis, I. Fundulaki, T.

Milo, and A. Sahuguet, "An Electronic Patient Record "on

Steroids": Distributed, Peer-to-Peer, Secure and Privacy-conscious

" in Proceedings of the Thirtieth International Conference on

Very Large Data Bases, Toronto, Canada, pp. 1273-1276, 2004.

[28] I. Bilykh, Y. Bychkov, D. Dahlem, J. H. Jahnke, G. McCallum, C.

Obry, A. Onabajo, and C. Kuziemsky, "Can GRID services

provide answers to the challenges of national health information

sharing?," in Proceedings of the 2003 conference of the Centre for

Advanced Studies on Collaborative research Toronto, Ontario,

Canada: IBM Press, 2003.

[29] M. R. Lyu, E. Yau, and S. Sze, "A multilingual, multimodal digital

video library system," in Proceedings of the 2nd ACM/IEEE-CS

joint conference on Digital libraries Portland, Oregon, USA:

ACM Press, 2002.

[30] Q. Liu, R. Safavi-Naini, and N. P. Sheppard, "Digital rights

management for content distribution," in Proceedings of the

Australasian information security workshop conference on ACSW

frontiers 2003 - Volume 21 Adelaide, Australia: Australian

Computer Society, Inc., 2003.

[31] M. Petros, R. Mema, T. J. Giuli, S. H. R. David, and B. Mary,

"The LOCKSS peer-to-peer digital preservation system," ACM

Transactions on Computer Systems, vol. 23, pp. 2-50, 2005.

[32] F. B. Bastani and I. L. Yen, "A Fault Tolerant Replicated Storage

System," in Proceedings of the Third International Conference on

Data Engineering: IEEE Computer Society, 1987.

[33] B. F. Cooper and H. Garcia-Molina, "Peer-to-peer data trading to

preserve information," ACM Trans. Inf. Syst., vol. 20, pp. 133-

170, 2002.

[34] J. Lu and J. Callan, "Content-based retrieval in hybrid peer-to-peer

networks," in Proceedings of the twelfth international conference

on Information and knowledge management New Orleans, LA,

USA: ACM Press, 2003.

[35] J. Prewett, "Cluster security - the paradigm shift," in Fifth

IEEE/ACM Intemational Symposium on Cluster Computing,

Cardiff, UK, pp. 74-76, 2005.

[36] "Health Insurance Portability and Accountability Act ". vol. 45

CFR 164.308, U.S., Ed., 1996.

[37] M. Markel, "Safe harbor and privacy protection: a looming issue

for IT professionals," Professional Communication, IEEE

Transactions on, vol. 49, pp. 1-11, 2006.

[38] Z. Yinghua, X. Xing, W. Chuang, G. Yuchang, and M. Wei-Ying,

"Hybrid index structures for location-based web search," in

Proceedings of the 14th ACM international conference on

Information and knowledge management Bremen, Germany:

ACM Press, 2005.

[39] S. H. Jagbir, D. Erdogan, and S. Raj, "Health Level-7 compliant

clinical patient records system," in Proceedings of the 2004 ACM

symposium on Applied computing Nicosia, Cyprus: ACM Press,

2004.

[40] M. G. Christel, D. B. Winkler, and C. R. Taylor, "Multimedia

abstractions for a digital video library," in Proceedings of the

second ACM international conference on Digital libraries

Philadelphia, Pennsylvania, United States: ACM Press, 1997.

[41] A. Guttman, "R-trees: a dynamic index structure for spatial

searching," in Proceedings of the 1984 ACM SIGMOD

international conference on Management of data Boston,

Massachusetts: ACM Press, 1984.

[42] L. Arge, M. d. Berg, H. J. Haverkort, and K. Yi, "The Priority R-

tree: a practically efficient and worst-case optimal R-tree," in

Proceedings of the 2004 ACM SIGMOD international conference

on Management of data Paris, France: ACM Press, 2004.

[43] J. Surrago, "Doctor's offices and clinics," in Rough Notes. vol. 2,

February 2001, pp. 1-2.

[44] D. A. Lelewer and D. S. Hirschberg, "Data compression," ACM

Comput. Surv., vol. 19, pp. 261-296, 1987.

[45] USCB, "World Population Information," United States Census

Bureau, 2006.

[46] R. Bayer, "Binary B-trees for virtual memory," in Proceedings of

the 1971 ACM SIGFIDET Workshop, New York, New York, pp.

219-235, 1971.

[47] S. Falk, E. W. Hugh, Y. John, and Z. Justin, "Compression of

inverted indexes For fast query evaluation," in Proceedings of the

25th annual international ACM SIGIR conference on Research

and development in information retrieval Tampere, Finland: ACM

Press, 2002.

[48] A. Ebidia, C. Mulder, B. Tripp, and M. W. Morgan, "Getting data

out of the electronic patient record: critical steps in building a data

warehouse for decision support," Proc AMIA Symp, pp. 745-9,

1999.

[49] G. O’Neill and P. P. Barry, "Training Physicians in Geriatric Care:

Responding to Critical Need," Public Policy and Aging Report,

vol. 13, pp. 17-21, 2003.

[50] R. Baeza-Yates and B. d. A. N. Ribeiro, Modern information

retrieval. New York: ACM Press 1999.

[51] B. Shekhar, "Getting Gigascale Chips: Challenges and

Opportunities in Continuing Moore's Law," Queue, vol. 1, pp. 26-

33, 2003.

[52] W. B. Frakes and R. Baeza-Yates, "Information retrieval: data

structures and algorithms," Prentice-Hall, Inc., 1992.

[53] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, "An

implementation of elliptic curve cryptosystems over

F₂155," Selected Areas in Communications, IEEE

Journal on, vol. 11, pp. 804-813, 1993.

[54] Z. Chenghao, T. Yongqiang, F. Jie, Z. Guozhen, and Z. Jianguo,

"Building Hospital EPR with IHE Technical Framework," pp.

5684-5686, 2005.

[55] C. Taylor and J. Alves-Foss, "Diversity as a computer defense

mechanism," in Proceedings of the 2005 workshop on New

security paradigms Lake Arrowhead, California: ACM Press,

2005.

[56] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.

Nielsen, "SOAP Version 1.2 Specification," W3C, 2003.

[57] M. A. Rahaman, A. Schaad, and M. Rits, "Towards secure SOAP

message exchange in a SOA," in Proceedings of the 3rd ACM

workshop on Secure web services Alexandria, Virginia, USA:

ACM Press, 2006.

[58] "Web Services Description Language,"

http://www.w3.org/TR/wsdl. Accessed On: January 20, 2007

[59] "Universal Description, Discovery and Integration (UDDI)

Specification,”http://www.oasis-open.org/committees/uddi-

spec/doc/tcspecs.htm#uddiv3. Accessed On: January 20, 2007

[60] D. Arthur and R. Panigrahy, "Analyzing BitTorrent and related

peer-to-peer networks," in Proceedings of the seventeenth annual

ACM-SIAM symposium on Discrete algorithm Miami, Florida:

ACM Press, 2006.

[61] T. Suel, P. Noel, and D. Trendafilov, "Improved file

synchronization techniques for maintaining large replicated

collections over slow networks," pp. 153-164, 2004.

[62] "University of Chicago Hospitals,"

http://em.uchicago.edu/fr_hosp.html. Accessed On: January 19,

2007

[63] "The Rsync algorithm,"

http://olstrans.sourceforge.net/release/OLS2000-rsync/OLS2000-

rsync.html. Accessed On: January 19, 2007

[64] Qwest Communications, "Geographic Redundancy and the

Internet," Philadelphia, Pennsylvania, Technical Note 2001.

