
IEEE INTERNET COMPUTING 1089-7801/02/$17.00©2002 IEEE http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 59

G
lo

ba
l

D
ep

lo
ym

en
t

of
 D

at
a

C
en

te
rs

Chad M. Steel
Penn State University

Building a Multisite
Web Architecture
Optimizing components before optimizing the system as a

whole can help large organizations deploy efficient,

geographically redundant Web infrastructures.

Many large organizations that
first “came online” in the late
1990s are now facing the deci-

sion whether to upgrade their Web sys-
tems or to start anew. Given the speed
with which new technologies are intro-
duced in the Web environment, system
deployment life cycles have shrunk sig-
nificantly — but so have system life
spans. After only a few years, an organi-
zation’s Internet infrastructure is likely to
need a major overhaul.

In late 2001, the systems architecture
team to which I belong took on these
issues for an organization that wanted to
rebuild its Web infrastructure. The exist-
ing infrastructure contained multiple sin-
gle points of failure, could not scale to
expected usage patterns, was built on
proprietary systems, and had a high man-
agement overhead. The legacy infrastruc-
ture had grown organically over the pre-
vious five years as administrators added
unplanned features and functionality, and

usage had grown 100-fold since the spec-
ifications were initially developed.
Because of the age and condition of the
legacy systems, we decided to redesign
the solution from scratch to overcome the
inherent limitations.

This case study describes the process
our systems architecture team followed
for designing and deploying the new
architecture. I detail the component-
selection rationale, with implementation
details where allowed. Ours is just one
successful approach to deploying a mul-
tisite, fully redundant Web-based system
for a large organization; other reasonable
and viable ways to build such a system
also exist. Nonetheless, we learned sever-
al important lessons along the way —
some of which contrast with convention-
al wisdom.

Planning the Project
A key factor differentiating this project
from a typical software development

endeavor was the need to perform purchasing and
infrastructure installation while the application
architecture team was finalizing the application
specifications. Due to this constraint, the systems
architecture team had to adopt a process flexible
enough to accommodate major changes without
additional cost or delay. To that end, we borrowed
heavily from the architecture tradeoff analysis
method (ATAM)1 and Hatley-Pirbhai2 systems
specification methodologies, as well as from our
own experiences.

Using an increasing-refinement process (going
from black box to specific component implemen-
tation details), we created the initial design, which
we refined through back-propagation. We made
component-level changes when possible, and
changes at the physical architecture level when
necessary. The initial logical architecture proved
flexible enough that we did not need to make any
changes at this layer.

Based on newly available information and fol-
lowing general system-architecture design prin-
ciples, we identified several deficiencies in the
previous infrastructure that drove many of our
design goals.

� Scalability. Allow for singular (upgrades with-
in a machine), horizontal (addition of machines
within an architectural tier), and geographic
(addition of another site) growth.

� Reliability. Provide 99.99 percent uptime for
end users.

� Extensibility. Permit interaction with multiple
database and application server platforms, and
support porting of a legacy code base (C/C++,
Perl, Python, and shell scripts).

� Performance. Support 100 million daily page
views at either of two geographic locations.

� Cost. Maximize price and performance based
on a five-year system life cycle.

� Security. Adhere to U.S. National Information
Assurance Certification and Accreditation
Process (NIACAP)3 principles.

We used these criteria to create a physical archi-
tecture (illustrated in Figure 1) that supports all
the logical architecture functionality for two
geographic locations. Additionally, we used these
design principles to evaluate and rank compo-
nents we considered purchasing. Due to the
organization’s special requirements, however, we
were forbidden to use open-source software on
the system, which limited our scope in evaluat-
ing components.

Building the Network
The crux of the system architecture effort was
translating the logical requirements into a detailed
physical implementation. Based on the logical
architecture and business requirements, we
designed a detailed infrastructure.

When we started the project, our first decision
was whether to adopt a Windows- or Unix-based
solution for the environment. Given the need for
extensibility, we surveyed the primary application
server vendors and found the performance on Unix
systems was significantly higher than the same
software on Windows systems. Based on our test-
ing, we believe that the hardware for a Windows
platform could scale to the same levels as the
equivalent Unix hardware, but the requirement for
more CPUs for an equivalent throughput on Win-
dows made software licensing cost prohibitive. We
therefore chose to deploy a Sun Solaris-based
switched, 100-Mbit-per-second Ethernet network,
broken into virtual local area networks (VLANs).

To eliminate single points of failure, each net-
work component contains two network cards cross-
connected to two separate switches. This redun-
dancy ensures that individual network component
failures will not affect other components. On the
front end, dual 100-Mbps active-active connections
(both carrying traffic at all times) link directly to
the Internet backbone at both geographic locations
for a total aggregate bandwidth of 400 Mbps. Each
pair of connections is then cross-linked to redun-
dant backbone routers for upstream redundancy.

For site-to-site connectivity, we installed a
point-to-point T1. We used Symmetrix Remote
Data Facility (SRDF)4 functionality to schedule
automated data replication between EMC units.
Considering the small number of regular changes
the organization’s staff would have to make after
the initial load of the site content, the T1’s 1.5-
Mbps bandwidth seemed sufficient. Moreover, the
network architecture ensures that IT staff can
increase the bandwidth by setting up a virtual pri-
vate network through the front-end Internet con-
nections on demand; in fact, that is how we ini-
tially replicated the full site.

Network Infrastructure
Most of the software licensing we investigated
was based on the number of CPUs, rather than the
number of boxes. The cost-to-performance ratio
for a Sun Solaris-based 100-Mbps Ethernet infra-
structure was better than the other major Unix
vendors, in part due to price drops resulting from
a newly introduced product line. Additionally, we

60 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

had access to better software support for the
components we needed and more employees who
were trained to use Solaris than the other major
Unix vendors.

In looking at the server hardware, the main fac-
tors we considered were scalability and the price-
to-performance tradeoff. We investigated hard-
ware of various sizes — from single-rack-unit,
single-CPU blade servers to standalone 64-CPU
enterprise-class servers — to find the best option
for this implementation. Based on the traffic pat-
terns and expected usage (mostly front-end, stat-
ic Web serving), we decided the enterprise-class
servers were overkill. The single blade servers were
a reasonable alternative, but the number of
machines required would have necessitated high-
er ongoing costs for support and management, as
well as additional networking hardware to imple-
ment appropriately (more switch ports, additional
load-balancer workload). Given these tradeoffs, we
chose to implement quad-CPU-capable, 4-rack-
unit machines with memory and CPU at approxi-
mately half of capacity (2 CPUs, 2 Gbytes of RAM).

We purchased equivalently configured models
for all the servers in the implementation, except
the reporting server, for two primary reasons. First,
it made parts-sparing (keeping spare parts on hand
for replacement) and support easier because only
one set of hardware was needed to replace any
machine that had difficulties. Second, although a
given machine might not have the optimal mem-
ory-to-CPU ratio for a given application, having
equivalent machines for each tier allowed us to
correct the balance between application servers,
Web servers, database servers, and search servers if
our initial capacity-planning estimates were off,
or if new applications altered usage patterns.

We left the machines at half capacity for growth
reasons. For intramachine growth, we could
upgrade all of the machines in a given tier to
achieve approximately twice the power for mini-
mal cost. This allowed us to add capacity without
having to add machines within a tier, eliminating
additional charges for power, rack space, moni-
toring, and other per-machine costs.

The server used for exception reporting required

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 61

Multisite Web Architecture

Internet

100 Mbps
Intrusion detection

system (IDS) Checkpoint
firewall
(FW1)

100 Mbps
Checkpoint

firewall
(FW2)

3DNS Big IP 1 Big IP 2 IDS2

Checkpoint
firewall
(FW3)

Checkpoint
firewall
(FW4)

f5f5 f5

Secondary
site

T1

FTP 1-3 Search 1-2 Web 1-12

Data
mover 2

Data
mover 1

EMC

Control
station

Content
management

Content
database

Backup/
reportingDB1 DB2Applications 1-3

Figure 1. Physical production environment layout. The physical site architecture of the primary location contains compart-
mented applications with intrasite redundancy.

less bandwidth on the network side but signifi-
cantly higher CPU and memory to process ad hoc
queries and handle nightly log processing. Using
the same model we implemented for the Web
servers would have added complexity through the
use of distributed processing. To eliminate the need
for load-balancing, we decided to set up a single,
more powerful machine and give it access to the
final log data. We chose a mid-range server with
8 CPUs and 8 Gbytes of RAM. This also satisfied
our evidentiary and security needs, which neces-
sitated quick access to consolidated, historical log
data.

Security
The system needs called for a security-in-depth
model. Because security is handled across many
levels of the infrastructure, I will limit the discus-
sion to the two components of the basic setup.

Firewalls. The systems architecture team chose to
use stateful inspection Checkpoint Firewall-1
appliances, which track each connection travers-
ing all the firewall’s interfaces to make sure they
are valid, based on the rules we defined. Given the
peak volumes expected, proxying solutions would
have limited performance. Besides, the firewall
boxes we chose offer robust management capabil-
ities. For these reasons, we implemented them
across the architecture, on the front-end and back-
end connections as well as internally.

As Figure 1 shows, the firewalls are active-
active, as are the other front-end components. The
firewalls are locked down to allow only Web and
FTP traffic inbound (ports 21, 80, 443) and mail
traffic (SMTP) outbound; they block all other traf-
fic at the front. We also put antispoofing rules in
place on the front-end firewalls. The back-end fire-
walls are locked down to allow specific IP address-
es from remote locations direct access to one or
more boxes and to disallow outbound traffic from
the site.

Intrusion detection systems. For each IDS, we
installed an enhanced Network Flight Recorder
(www.nfr.com) appliance to analyze and track all
network activity. Our NFR appliances run on a
stripped-down Linux kernel; to avoid direct tar-
geting, they are not assigned IP addresses. We
enabled port-spanning on the switches to allow
the IDS to listen in promiscuous mode to all
incoming and outgoing traffic on all ports.

To ensure that both internal and external traf-
fic was monitored adequately, we placed the IDSs

at two separate levels in the infrastructure. At each
location, IDS1 monitors all incoming traffic before
load-balancing, as well as monitoring attacks to
and from the 3-Domain-Name-Service (3-DNS)
box, which performs geographic load-balancing
and name resolution services. We placed IDS2
behind the load-balancers so that we could moni-
tor traffic to and from non-load-balanced IP
addresses. This allows us to identify the specific
box attacked, not just the load-balanced address,
for later forensics.

In addition to this configuration, we followed
best practices to harden operating systems and
applications across the board. We performed the
appropriate vulnerability assessments and pene-
tration tests before taking the infrastructure live.5

Internet Software
We selected iPlanet as the Web server software for
its throughput capabilities with static and dynam-
ic pages and its ability to integrate easily with
back-end application servers running Netscape
server application programming interface (NSAPI)
plug-ins.6 We considered using Apache, but decid-
ed against it due to our open-source restrictions
and the lack of multithread support in Apache at
the time (pre-2.0).7

For basic FTP functionality, we used the built-
in FTP software on dedicated servers. The old
architecture routed all large downloads (a signifi-
cant portion of the site’s Internet traffic is Adobe
PDF files) through the Web servers by default. We
separated out the FTP servers to ensure that any
compromise of an FTP server would not affect the
HTTP servers (which have FTP disabled). This also
allows us to limit any performance differentials to
a given protocol, which makes correcting the prob-
lem quicker and more efficient.

For search functionality we chose Inktomi, pri-
marily for its ranking technology and its ability to
parse PDF files. We liked Google, but rejected it
due to the inherent problems with link structure in
the original site. If we had needed to go live with
the legacy Web site intact, Google’s algorithm
would have caused suboptimal search performance
due to inadequacies in the site’s information archi-
tecture. Once the site underwent a separate infor-
mation architecture revision, however, it would
have worked just as well with Google.

Geographic Load-Balancing
To benefit full-time from the hardware imple-
mented for the secondary production site, we set
both sites to be active-active. Each location, how-

62 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

ever, was sized to handle the full peak traffic load
in the event of catastrophic site failure. As an
added benefit, we could then remove an entire
geographic location from the load-balancing
schema for scheduled maintenance and testing
with no end-user impact.

We used F5’s 3-DNS for geographic load-bal-
ancing (GLB) between the two locations. Tradi-
tional DNS services (we use the GLB machines for
this as well) support the load-balancing algo-
rithms by assigning one of the two locations to
each request. Specifically, we used quality-of-ser-
vice measurements to implement local DNS
(LDNS)-persistent round-robin load-balancing.
Administrators assign each LDNS server a load-
balanced IP address for one of the two geograph-
ic locations, depending on how well the locations
are performing. For sessioning, we maintain per-
sistence by assigning a consistent geographic
location to an LDNS. Each LDNS always has the
same geographic location assigned to it unless a
failure occurs for the whole location, at which
point all LDNSs would be assigned the remaining
location.

Along with load-balancing the two geograph-
ic locations, we used the GLB machines to load-
balance each incoming 100-Mbps segment. This
allowed us to treat each segment as its own geo-
graphic location for load-balancing purposes, and
let us provide accurate load distribution between
segments within the same data center without the
added complexity of performing bonding (by com-
bining the incoming physical connections into one
logical connection) or other load distribution at
the lower levels of the network stack. As an added
benefit, using the GLB devices to simulate geo-
graphic load-balancing within a center allows for
the removal of an entire segment for testing and
upgrading while the other three segments still
serve pages.

Local Load-Balancing
We installed redundant F5 Big-IP devices to per-
form local load-balancing (LLB). These machines
provide a load-balanced IP address to the Internet
and distribute incoming requests locally based on
the local servers’ availability and response times.
The LLB machines are set to load-balance requests
between the three primary server groups: Web,
search, and FTP.

The LLB boxes also have secure sockets layer
(SSL) accelerator cards that improve the speed of
secured sessions. The boxes maintain session per-
sistence geographically using the 3-DNS machine.

The LLB devices provide one more function, based
on their extended verification options: If checking
keywords on the page turns up a change to the
homepage (typical of a page-defacement attack)
that invalidates the verification, the LLB box
removes that machine from the active pool.

Data Storage and Replication
For primary storage in this implementation, we
installed an EMC Symmetrix mass-storage device
at both geographically separated data centers. Two
primary factors drove our selection: ease of repli-
cation (using SRDF) and ease of management.

For replication, all content is pushed to a single
partition (shared by the staging environment,
where content management resides) on the mass-
storage device that the content management
servers can read and write to. A set of automated
scripts copies updated content from this partition
directly to a production partition as needed.

The production partition contains the shared
content for all the Web and FTP servers, accessible
through network file system (NFS) data movers in
front of the mass-storage unit. To prevent page-
defacement attacks, this partition is read-only from
these servers. Because the FTP root is a branch of
the Web root, all documents are published to a sin-
gle point, which simplifies version control and

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 63

Multisite Web Architecture

Table 1. Load-testing results.

Simultaneous Hits/second CPU Throughput
virtual users utilization (%) (Mbps)

500 453 1 16
1,000 810 2 32
1,500 1,177 3 45
2,000 1,511 4 62
2,500 2,011 4 80
3,000 2,556 7 96
3,500 2,905 10 110
4,000 3,304 11 128
4,500 3,751 13 145
5,000 4,236 15 160
5,500 4,776 14 173
6,000 5,246 20 191
6,500 5,647 19 208
7,000 6,071 24 228
7,500 6,474 25 238
8,000 6,818 27 250
8,500 7,040 27 262
9,000 7,326 26 270
9,500 7,482 27 275

10,000 7,428 28 278

update management. The primary mass-storage
unit uses SRDF to replicate the production partition
to the secondary site as needed.

Assuming properly configured local-server
caching, an external storage arrangement such as
this (after it is primed by traversing the entire site
one time) offers performance equivalent to local
subsystems without increasing complexity.

Content Management
When evaluating the organization’s requirements,
we determined that the content management
application (CMA) should reside wholly in staging.
Because the organization had an existing enter-
prise license, however, we needed to use Vignette’s
V6 Content Suite as the content management solu-
tion.

The standard Vignette V6 architecture relies on
dynamic content delivery through an in-line appli-
cation content server model. Given that we did not
need dynamic content delivery, and that the stan-
dard architecture adds complexity and overhead,
we decided to implement V6 solely in staging.

Our implementation contains the workflow and
templating functions. The CMA dynamically gen-
erates a static version of each page on the site and
stores it on the staging partition for use in both
manual and automated testing. An automated
script then moves any changes up to production
after appropriate approvals by editorial, security,
and testing personnel; we plan to implement more
complex workflows and end-user content submis-
sion in later phases.

Considering the fairly static publishing model,
even a catastrophic failure of content management
would not impact end users. We therefore decided

to implement the content management environ-
ment at only one location because we could not
justify the additional cost of maintaining a hot
backup. However, we did provision space and
establish backup plans to provide a quick (within
48 hours) CMA recovery to the second geographic
site as needed.

Backup, Logging, and Reporting
Separate servers at each location handle all back-
up, logging, and reporting. The centralized infor-
mation storage on the mass storage unit minimized
the need for tape backups. Log files and a database
partition are regularly backed up to a central box,
and we have a Jumpstart machine dedicated to
quickly rebuilding the system and application soft-
ware configuration on boxes on each tier. For ver-
sion control, the Jumpstart is updated with patch-
es as they are quality tested, leaving only the data
to be backed up. Storing most of the data on a sin-
gle shared partition significantly reduces backup
complexity.

Each location runs logging and reporting indi-
vidually, keeping the results separate. While this
means there is no easy way to combine statistical
reporting for ongoing usage, that limitation was
outweighed by two savings: eliminating the need
to transfer the logs for each server to the mass-
storage unit and then across the wide-area net-
work connection; and reducing the need for the
additional processing power at each location to
perform twice the amount of log analysis.

Webtrends is our primary tool for analyzing
Web usage. We implemented the enterprise ver-
sion of the software because it lets us perform
cross-server tracking and logging within a geo-
graphic location. We manually collect additional
metrics from networking equipment, IDSs, fire-
walls, and so on, but provide them to the end
client only on request.

Testing the System
Before going live with the new infrastructure, we
load-tested it to verify that it met contractual per-
formance requirements and to remove any remain-
ing bottlenecks.

Testing entailed simulating up to 10,000 simul-
taneous 28.8-Kbps modem users (the most com-
mon usage speed from the previous year). We set
the virtual users to travel specific paths of varying
lengths through the site and download forms of
various sizes. The specific paths and forms were
not random, but were generated to approximate
the highest usage patterns from data collected on

64 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

H
its

 p
er

 s
ec

on
d

Virtual users

8,000

7,000

6,000

5,000

4,000

3,000

2,000

 1,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Figure 2. Hits per second progression. Hits per second increased to a
peak of 7,482 — approximately 650 million hits a day.

the legacy site. We used actual form sizes to
reduce inflation of numbers due to inaccurate sim-
ulation from smaller (or even larger) page sizes.8

Results
Table 1 shows the combined results for both sites.
The primary measures we collected were hits per
second, CPU utilization, and throughput. (Earlier
testing revealed that both memory and disk uti-
lization had extremely minimal impact on perfor-
mance, so we did not monitor them further.) The
test results showed that performance was bound
by the bandwidth more than by the architecture.

As Figure 2 (previous page) illustrates, the pri-
mary resources scaled linearly until they reached
the highest utilization numbers — indicating that
our design should continue to scale with expected
usage. Figure 3 shows how contention issues start-
ed to affect performance once combined band-
width usage passed 270 Mbps for the four 100-
Mbps links.

CPU utilization remained on a linear progres-
sion as well (Figure 4). We had substantially more
CPU power at our disposal than originally expect-
ed, perhaps due in part to optimizations we per-
formed on the iPlanet servers (tweaking options
individually during earlier component load test-
ing). Based on the load-testing results, we put
migration plans in place to extend the bandwidth
of the incoming connections to a gigabit feed if
usage increased enough to mandate it.

Lessons Learned
The following list summarizes our top seven
lessons we learned in deploying this complex,
multilocation Web-based system.

Component load-testing and optimization is
critical. We improved performance by 3 to 4 times
on several individual components by load-testing
them on individual servers with their specific
applications. Application and network-tuning
issues that might not have become apparent dur-
ing the full testing were more prominent during
the individual tests. Adding one component at a
time to the testing configuration enabled us to iso-
late performance problems and optimize individ-
ual performance before system performance.

Ensure communications between groups. One of
our primary challenges was to maintain open com-
munications between groups. Although this is not
an uncommon issue in such projects, it becomes
critical in optimizing a system architecture because
an application architecture decision can have a
tenfold impact on overall system performance.

Good communication helped us resolve at least one
serious problem: a particular software component
was performing noncached lookups from the data-
base servers, creating an application-level bottle-
neck. By establishing cross-functional trou-
bleshooting teams, we saved significant time in
identifying the appropriate group to fix any issue
that came up, and finger-pointing (which often
results from poor communications) was nonexis-
tent.

Past usage doesn’t describe future usage. Once
the architecture went into production, new usage
patterns were significantly different from those
shown in the historical data. This was partly due
to a more efficient design, but factors like a more
prominent search box and changes in the overall

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 65

Multisite Web Architecture

Ba
nd

w
id

th
 u

se
d

(M
bp

s)

Virtual users

300

250

200

150

100

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Figure 3. Throughput progression. Total bandwidth for the two loca-
tions peaked at 278 Mbps for the four connections.

C
PU

 u
til

iz
at

io
n

(p
er

ce
nt

)

Virtual users

30

25

20

15

10

5

0
 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Figure 4. Average CPU utilization progression. Average CPU utiliza-
tion peaked at 28 percent, indicating that this was not a choke point
for performance.

economic landscape altered public interest and
usage patterns as well.

Don’t forget the administrative interfaces.
Although I skimmed over the topic in this article,
the security infrastructure presented one of the main
challenges to the implementation. The largest prob-
lem was integrating the management and adminis-
tration interfaces into a comprehensive architecture.
For example, the IDS needs an interface to send
secure alerts, the backup subsystems need their own
LAN, and the monitoring software needs primary
and backup solutions for sending data.

Put an IDS after load-balancing. If your only
IDS is in front of the load-balancers, it is difficult
to track incoming requests to an individual
machine. When determining where a successful
attack hit, it saves time and energy to be able to
map to an individual box. Additionally, a front-
end IDS might not catch traffic between already
compromised internal boxes.

Talk to the component designers when anom-
alies occur. At one point, performance dropped
sharply on the Web server, and we were unable to
diagnose it locally. When we engaged Sun’s sup-
port staff, we determined that the wait queue
length was fixed at a suboptimal number for our
implementation. Changing that single parameter
made a drastic impact on overall performance.

Don’t be afraid to go against established imple-
mentation models. To suit the mandates of the busi-
ness requirements, we had to change several details
of the implementation (not the requirement!),
although that went against traditional vendor
deployment models. For example, V6 is not usual-
ly used in a “dynamic page generation in staging
pushed to static production pages” model, but that
configuration gave us robust content-management
capabilities without the overhead or added com-
plexity of dynamic generation. Also, using the
LDNS to load-balance local segments allowed us to
use all four segments in active-active mode with-
out a complex network configuration.

Conclusion
The site is now successfully live, and it has won
accolades from both internal groups and the media

for its improved design and performance. Imple-
menting this system allowed us to apply existing
methodologies to Web architecture design.

There are specific methodologies for develop-
ing Web sites and traditional Web-based appli-
cations. Additionally, there are many useful sys-
tems architecture methodologies available. Based
on lessons learned from large Web deployments
and wisdom distilled from existing methodolo-
gies, the next challenge will be to create a com-
prehensive methodology specifically for Web
system architecture.

References

1. P. Clements, R. Kazman, and M. Klein, Evaluating Software

Architectures: Methods and Case Studies, Addison-Wesley,

Boston, Mass., 2001.

2. D. Hatley and I. Pirbhai, Strategies for Real-Time System

Specification, Dorset House, New York, 1987.

3. U.S. Govt. Standard NSTISSI 1000, National Information

Assurance Certification and Accreditation Process, U.S.

National Institute of Standards and Technology, Gaithers-

burg, MD, Apr. 2000.

4. “Symmetrix Remote Data Facility,” tech. note, EMC Corp.,

Hopkinton, Mass., 2001.

5. P. Herzog, “Open Source Security Testing Methodology

Manual,” GNU Public License Document, 2002; available

at http://uk.osstmm.org/osstmm.en.2.0.zip.

6. iPlanet Web Server, Enterprise Edition Administrator’s

Guide, Sun Microsystems, Palo Alto, Calif., 2001; available

at http://docs.sun.com/source/816-5691-10/.

7. B. Weiner, “iPlanet Web Server, Enterprise Edition 4.0 and

Stronghold 2.4.2 Performance Comparison,” Mindcraft

Corp., London, 2000.

8. D. Yates, V. Almeida, and J. Almeida, “On the Interaction

between an Operating System and a Web Server,” tech.

report, CS97-012, Boston Univ., 1997.

Chad M. Steel is the director of systems integration and securi-

ty services for a Fortune 500 consulting organization and

an adjunct professor in software engineering at Penn State

University. He holds a BS and an MS in computer engi-

neering from Villanova University. His research interests

include Internet security and Web architectures.

Readers can contact the author at csteel@ieee.org.

66 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Check out IEEE Internet Computing’s next issue on...

THE TECHNOLOGY OF TRUST
This special issue will take a broad look at trust in leading-edge research,

prototypes, and implementations in the context of the global Internet infrastructure.

For more information on this and other computing topics, see our editorial calendar at
computer.org/internet/edcal.htm

