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Abstract 
Facial anthropometry is the measurement of facial features and proportions for medical purposes.  The use of 

anthropometric measures as dimensions in an age detection naïve Bayesian classifier is used to accurately 

determine if the individual depicted in a digital image is a minor (<18 years of age) or not.  The resulting classifier is 

shown to have excellent performance (Precision - 0.89418, Recall - 0.871134) in discriminating images of children 

from those of adults.  Additionally, the key anthropometric ratios for age recognition are identified.  
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Highlights 
 

Our research provides several major contributions to the field of age classification: 

 

 First, a classifier is built that outperforms the current-best facial age classifiers.   

 

 Second, the best ratios for facial anthropometry are identified.   

 

 Third, the use of anthropometric ratios in a naïve Bayesian classifier is shown to have an experimental 
performance greater than that of cardioidal strain. 
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 Finally, it is shown that anthropometric ratios are correlated with age, but are more strongly correlated 
with developmental stage. 

 

 

1 Introduction 
 

A specialized application of age detection algorithms is the detection of minors based on facial characteristics.  
The ability to detect if an individual is below the age of 18 is useful forensically in the detection of child 
pornography.  The use of facial features to appropriately classify age expands the applicability of classifiers based 
on the Tanner Scale [1] to applications where body-specific feature classifiers are not possible due to clothing 
obscuration.  Specific applications include automated cigarette machines validation [2], scanning of casino 
surveillance for under-age patrons, and entry into nightclubs. 

Using facial anthropometry we identify the key ratios associated with age, classify a set of labeled images based 
on the ratios, and compare the results to current techniques.  The application of a Bayesian classifier to facial 
anthropometric ratios is used to train and classify images of individuals ranging from a few months old to elderly.  
Finally, a test of efficacy of pubescence detection vis a vis age detection is performed. 

Overall, the use of anthropometric ratios are shown to be an effective classifier for age.  They outperform current 
techniques, are efficient to calculate, and have a traceable accuracy that can be manually verified. 

2  Theory 
 

The use of faces to differentiate between pre and post-pubescent images relies on changes in craniofacial 

geometry.  The basic ratios present in the face alter in proportion to cranial development.  With infants, an increase 

is vertical relative to horizontal size is present, along with a less pronounced and more flat nose and an increased 

eye size relative to head size.  These proportions gradually change until growth stops, at which point adult ratios 

are present.  These same changes are perceptually noted by individuals when assessing the age of children as 

discriminators [3].   

A mathematical basis was developed for the facial changes which was characterized as cardioidal strain [4].  The 

strain equations provide a three dimensional transform which changes the shape of the cranium (and thereby the 

face) in relation to perceived age [5].  These were shown to be responsible for the majority of developmental 

difference in cranial structure throughout the growth process [6].  

Building on the anatomical work, Ramanathan et al summarized the techniques for computational age estimation 

based on facial characteristics [7].  Similarly, Geng et al use an eigenspace projection based on known age 

progressions to project an estimated age for an unknown face [8].  

Guo et al found that age estimation based on a manifold model of the face was possible.  Their work identified 

Conformal Embedding Analysis with linear regression as the best performing technique, with a mean absolute error 

of 5-6 years.   Their error estimates were not broken up into pre-and-post pubescent groups, however, and their 

applicability to minor detection would be based on a lower error rate in the pre-pubescent category [9].  
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Yang and Ai used Local Binary Patterns with AdaBoost, and they showed that a texture-based classifier 

outperformed one which used Haar-like features to segregate individuals into three categories – child, youth, and 

old.  While they do not define the age ranges, the trinary classification showed an average error rate of 

approximately 10%.  Given the model, tuning could be used to provide a binary classifier that would be tunable to 

the minor detection problem [10].  A more detailed overview of general techiques is available from Fu et al. [11] 

Kwon and Lobo used anthropometric ratios to classify age on a small scale coupled with wrinkles.  Their work 

pre-selected seven ratios and used forty seven images.  The technique showed promise, but their dataset was 

limited and the ratios were not necessarily the optimal ratios [12].  Similary, Gunay and Nabiyev propose the use of 

facial measurements with a neural network to do age estimation, though they do not provide extensive 

experimental results to evaluate against. [13] 

The use of facial anthropometric measures in age detection has generally been limited to direct measurement 
and comparison to physical norms.  For digital images, this implies the need to have the exact scale of the face in 
the image to renormalize the measurements to their physical counterparts.  Estimating the scale introduces an 
additional error factor in the calculations for single image measurement and a compounded error for multi-image 
age comparisons.    

Our approach uses ratios between defined facial points instead of direct measurements.  By utilizing ratios 
instead of simple measurements, direct comparisons between images of different sizes is possible, and direct 
estimation of age can be performed without knowledge of the scale in the image.   

Prior work in medicine has focused on direct measures and a few pre-determined ratios. [13]  The determination 
of the optimal ratios for facial recognition was computationally unfeasible, however, when the initial measurement 
work was performed. For the corpus used in the primary experiments, there are 68 individual points.  For an 

n-point measurement, there are 
  

 
 two dimensional point measures.  From these measures, there are (

  

 
)
 

 

separate ratios (inverse ratios not included), yielding 5.3 million ratios per image.   

To identify minors, we calculate all possible ratios for a labeled data corpus, and perform multiple experiments 
on the corpus.  The ratios with the greatest linear separability are identified, and these are then used in a naïve 
Bayesian classifier on a test set of images.  

Theoretically, the use of anthropometric ratios should outperform cardioidal strain.  The traditional equations for 
cardioidal strain (as depicted in Figure 1 below) are as follows [4]: 

 

                 

                       

       

 

 To show anthropometric ratios can be used to calculate cardioidal strain, we use to the most basic orthogonal 

measurements – the ratio from the nose to the ear and from the nose to the center of the forehead.  This ratio uses 

two radii, one at 90 degrees (  ) and one at 0 degrees (  ).  Given an arbitrary   , the radii are defined as: 
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Because          =   .  Substituting to solve for  , we find: 

 

                       

 

which reduces to: 

 

            

 

therefore,  

 

  

  
       

 

Since   is a growth factor and is directly proportional to the age of the child, the single ratio 
  

  
 is therefore directly 

proportional to the age.  Thus, anthropometric ratios estimate age equivalent to cardioidal strain with a single ratio, 

and a Bayesian classifier incorporating multiple ratios should perform equal to or better than a cardioidal strain 

measurement. 
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Figure 1 - Cardioidal strain 

 

  

3 Methods and Results 

 3.1 Data Set 
For this research we make use of the FG-Net aging corpus, which consists of 1002 labeled images of individuals 

ranging from infants to 68 years of age.  The corpus contains color images of different dimensions representing 
human faces.  The faces are pose-normalized to be largely forward-facing (though they may be angled vertically or 
horizontally) and have point files defining the limits of the faces within the images [14].  A sample image with the 
points labeled is shown in Figure 2. 

For the purposes of the experiments below, the dataset was broken into a training dataset and a test dataset.  
The training dataset consists of 501 images and the test set the remaining 501 images.  Images were randomly 
assigned to a set, however images of the same individual (where multiple ages were present) were grouped into 
the same set.   

 3.2 Experiment 1: Identification of Optimal Ratios 
Prior to running a Bayesian Classifier, the best ratios for minor discrimination (based on linear separability) were 

identified. The ratios for minors and the ratio for adults in the training set was calculated.  Each image in the test 

set was then compared to the training set to determine which classification (adult or minor) the ratio was closest to 

and classified as such.  The top ratios in terms of individual performance showed a classification accuracy of 81.7%, 

with over 100 ratios providing better than 80% discrimination.  The top ratios are show color-coded in Figure 2 

below.  
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Figure 2 – Top ratios for minor detection 

Overall, the top ratios tended to be non orthogonal, internal diagonal ratios.  Specifically, the facial feature edge 

detection (points 0-14 in the diagram) appeared to be less effective overall in determining age when compared with 

the internal feature measurements (ratios between the nose, eyes, and mouth).  This is consistent with fixed 

feature distances – the outer perimeter features are much more susceptible to weight fluctuation, and therefore 

expected to be less reliable as an overall predictor of age.  The top 10 ratios, all of which have an 81% individual 

accuracy, are shown in Table 1 below. 

 

Point 

1-1 

Point 

1-2 

Point 

2-1 

Point 

2-2 

27 44 30 42 

38 42 27 44 

38 41 27 44 

21 40 31 51 

38 41 29 45 

30 52 21 44 
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38 41 26 46 

9 36 24 55 

30 51 21 44 

40 51 21 30 

41 46 24 44 

Table 2 – Top ratios for minor discrimination 

3.3 Experiment 2:  Age Accuracy of Ratio Identification 
Because other techniques for age detection have focused on identification of age ranges, we analyzed the ability 

of ratios to predict age-ranges.  The age ranges were set to the year identified as labeled for 0-17 and all ages above 
17 were set to 18.  For any adults (those 18 or older) the ratios were not expected to change following the end of 
puberty.  As such, they would be expected to remain fixed – therefore a single category of above-18 was selected. 

The training set was used to calculate the average ratios as above but for each age bracket.  For each image 
present in the training set (for each ratio), the nearest-match ratio was identified and the age selected.  The 
difference between the predicted age was then determined and the mean absolute error (MAE) for each ratio pair 
over all images: 

  

MAE = ∑ |      |  
 
    

 

Where     is the actual age and    is the predicted age.  The top-performing single ratio measures indicate a mean 
deviation of 3.3 years, as shown in Table 2 below.  Unlike the internal measures identified as top ratios, when only 
child age-brackets are considered (the adults are collapsed into a single category), the external measures become 
more relevant.  Specifically, longitudinal/latitudinal ratios from perimeter locations are effective measures.  
Because of the general stability in relative fat distribution changes over childhood development (as opposed to 
adulthood), external measures can be used as age predictors once the minor/adult determination has been made. 

 

Point 

1-1 

Point 

1-2 

Point 

2-1 

Point 

2-2 MAE 

2 4 0 14 3.30 

0 14 9 13 3.31 

1 5 0 14 3.36 

0 13 1 4 3.36 

0 14 9 12 3.36 

1 4 0 14 3.39 
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0 14 2 5 3.42 

0 14 10 11 3.42 

2 4 0 13 3.42 

8 35 0 15 3.43 

2 4 0 14 3.30 

Table 2 – Best ratios for the prediction of exact age 

Using single ratios, the MAE for facial anthropometric measures are significantly better than those previously 
identified (3.30 v. 5.07).  A comparison of measures as identified in [9] is shown in Table 3 below. 

 

Algorithm FG-Net Results 

WAS [8] 8.06 

AGES [8] 6.77 

QM [15] 6.55 

MLPs [15] 6.98 

LARR [9] 5.07 

BEST_RATIO 3.30 

Table 3 – Cross-algorithm MAE comparison 

3.4 Experiment 3:  Naïve Bayesian Classifier 
For experiment 3 we built a Naïve Bayesian classifier to utilize the anthropometric ratios identified above to 

perform a binary classification of the facial images in the corpus as minors or adults.  As with the above 
experiments, all possible ratios for the set of training images were calculated as part of the classifier. 

Because many of the ratios were not good predictors of age, basic dimensionality reduction was performed prior 
to running the classifier.  Only ratios where a separation of at least .25 (determined heuristically) between the 
median ratio for adults and the median ratio for minors were used.   

To make the classifier adjustable for different detection thresholds, a simple bias, β, was incorporated into the 
ratio classification such that: 

 

                          

                             

 

 Using the tunable classification above, the receiver operating characteristic curve was plotted for the classifier as 
noted in Figure 3.   
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 The highest f-score performance (.89) occurred with a precision of .82 and a recall of .97.  Specifically, only 3% of 

minors were misclassified as adults, with 18% of adults misclassified as minors.  For the detection of child 

pornography, identifying the vast majority of the images that are children and misclassifying adults is preferable for 

a human-reviewed system, whereas an automated scan which reports the likelihood of child pornography being 

present in several thousand images would use a much higher precision and lower recall point. 

 In terms of simple accuracy, the non-adjusted performance resulted in 82% accuracy.  Is should be noted that this 

is not substantially higher than the accuracy identified in Experiment 1 for single ratio measurements.  Because the 

Naïve Bayesian classifier assumes dimensional independence, and because all facial anthropometric measures are 

highly correlated, the Naïve Bayesian performance is only slightly better than individual ratio performance. 

 

Figure 3 – Receiver Operating Characteristics for Naïve Bayesian Classifier 

3.5 Experiment 4:  Age demarcation  
As previously noted, one limitation of age detection algorithms using body characteristics is that they are not 

detecting age but detecting developmental maturity, which is a Gaussian distribution over a range of ages and not 

fixed at a given age.  While different characteristics peak at different points for each gender, facial structure is 

generally developmentally complete before 18 years of age.  As such, it would be expected that moving the 

detector from a minor detector to a pubescence detector would result in a higher recall and precision. 

For this experiment, we used the Naïve Bayesian classifier noted in Experiment 3 above.  The classifier was trained 

multiple times using the ages 12 and 18 (representing the expected age range of the completion of puberty).  The 

results are shown in table 4 below. 
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13 0.85 0.88 

14 0.88 0.88 

15 0.89 0.86 

16 0.90 0.84 

17 0.90 0.83 

18 0.92 0.82 

Table 4 – Best delineation age 

The best age for delineation was found to be 14 years old, representing the probabilistic end of puberty across 

genders.  For the purposes of child pornography detection, the bulk of prosecutions occur for distribution of images 

under 14, which would indicate a detector set younger than 18 might be warranted.  When the age is set to 14, 88% 

of the individuals in the images identified are actually under 14.   

Using an age of 14, further tuning as performed in Experiment 3 above could be conducted depending on the 

application.  Additionally, a separation of genders would likely result in a higher precision and recall, however limits 

in current gender detection algorithms would result in an overall lower performance due to gender misclassification 

error. 

4 Discussion 
 

The FGNet corpus provides a baseline for testing age detection methods,  however a larger and more ethnically 

diverse database would provide greater assurances that detection techniques are cross-cultural.  Additionally, there 

is no consistent measure in use for testing age detection algorithms.  The use of MAE appears to be an effective 

measure, but many papers attempt to create age-range buckets and thus measurements are based on bucket size 

in addition to algorithmic effectiveness. 

In addition to a larger dataset, this experiment grouped both male and female faces together.  While separating 

male and female into separate ratio groups will likely increase performance, the multiplicative error expected from 

a pre-classifier as to gender would likely reduce overall effectiveness, however this has not been proven 

experimentally. 

Finally, the selection of key facial points on which to base ratios is not a single-factor (accuracy) choice.  The 

ability to accurately identify ratio endpoints in an automated fashion is a key factor – the eyes, the nose, the center 

of the mouth and the extremes of the lower jaw are likely candidates for ease of identification. 

Because of the similarity in accuracy of the highest f-score ratios and the results of the Bayesian classifier, the use 

of other classifier techniques may yield higher results. 

Overall, the use of anthropometric ratios for the detection of child pornography is likely to be effective as part of 

a cascade classifier or for discrimination in ranking images for a human examiner.  However, the technique 
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identified (or any of the techniques surveyed) are not applicable to the detection of child pornography amongst a 

large corpus of legitimate images due to the base rate fallacy.   

5  Conclusions 
The use of facial anthropometric ratios has been shown to provide a more accurate age classification than prior 

techniques, including cardioidal strain and manifold models.  More specifically, the anthropometric ratio technique 

resulted in a leading classification performance for minor detection based on facial characteristics.   

Additionally, brute-force tabulation previously unavailable has allowed for the identification of the key ratios 

associated with facial growth in minors.  Previously, the best ratios for estimating age were based on 

measurements from a small number of subjects and were not comprehensive.  For real-world detection tasks as 

well as medical evaluations a broader understanding of key ratios is critical knowledge.  

For the purposes of age detection, it was shown that facial techniques could be more accurately characterized as 

developmental.  This has broad implications for legal use of automated age detection (and manual detection 

methods). 

 Finally, a classifier based on anthropometric ratios was shown to be cost efficient and effective in identifying 

minors in a manner that can be reproduced and manually calculated if necessary.  Because of the speed of 

classification when using a small number of ratios, this technique is applicable to real-time and high-volume 

recognition tasks. 
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